-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_consistency.py
529 lines (465 loc) · 20.4 KB
/
train_consistency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
from lightning import LightningModule, Trainer, seed_everything
from lightning.pytorch.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
import torch
from torch.nn import functional as F
from torch import Tensor, nn
from torchvision.utils import make_grid
from torchvision.transforms import ToTensor
from typing import List
from typing import Any, Optional, Tuple, Union, Iterator
from dataclasses import dataclass
from datetime import datetime
from rdkit import Chem
from rdkit.Chem import Draw
from utils._util_consistency import get_datamodule, get_consistency_models, ema_decay_rate_schedule
from diffusion_hopping.model.consistency_lightning import ConsistencyDiffusionHoppingModel
from diffusion_hopping.model import util as util
from consistency.models_consistency import *
import argparse
from types import SimpleNamespace
import wandb
import yaml
import os
image_to_tensor = ToTensor()
def get_train_smiles_consistency(train_dataset):
return [Chem.MolToSmiles(item["ligand"].ref) for item in train_dataset]
def _update_ema_weights(
ema_weight_iter: Iterator[Tensor],
online_weight_iter: Iterator[Tensor],
ema_decay_rate: float,
) -> None:
for ema_weight, online_weight in zip(ema_weight_iter, online_weight_iter):
if ema_weight.data is None:
ema_weight.data.copy_(online_weight.data)
else:
ema_weight.data.lerp_(online_weight.data, 1.0 - ema_decay_rate)
def update_ema_model_(
ema_model: nn.Module, online_model: nn.Module, ema_decay_rate: float
) -> nn.Module:
"""Updates weights of a moving average model with an online/source model.
Parameters
----------
ema_model : nn.Module
Moving average model.
online_model : nn.Module
Online or source model.
ema_decay_rate : float
Parameter that controls by how much the moving average weights are changed.
Returns
-------
nn.Module
Updated moving average model.
"""
# Update parameters
_update_ema_weights(
ema_model.parameters(), online_model.parameters(), ema_decay_rate
)
# Update buffers
_update_ema_weights(ema_model.buffers(), online_model.buffers(), ema_decay_rate)
return ema_model
def model_forward_wrapper_difsigma(
model: nn.Module,
x: Tensor,
mask: Tensor,
sigma: Tensor,
sigma_data: float = 0.5,
sigma_min: float = 0.002,
**kwargs: Any,
) -> Tensor:
"""Wrapper for the model call to ensure that the residual connection and scaling
for the residual and output values are applied.
Parameters
----------
model : nn.Module
Model to call.
x : Tensor
Input to the model, e.g: the noisy samples.
sigma : Tensor
Standard deviation of the noise. Normally referred to as t.
sigma_data : float, default=0.5
Standard deviation of the data.
sigma_min : float, default=0.002
Minimum standard deviation of the noise.
**kwargs : Any
Extra arguments to be passed during the model call.
Returns
-------
Tensor
Scaled output from the model with the residual connection applied.
"""
c_skip = skip_scaling(sigma, sigma_data, sigma_min)
c_out = output_scaling(sigma, sigma_data, sigma_min)
c_skip_expanded = c_skip[x['ligand'].batch[mask]]
c_out_expanded = c_out[x['ligand'].batch[mask]]
x_final_ligand, pos_out_ligand = model.consistency_model.estimator(x, sigma, mask)
ligand_features = x['ligand'].x[mask]
ligand_positions = x['ligand'].pos[mask]
x_final_ligand_ligand_mask = c_skip_expanded * ligand_features + c_out_expanded * x_final_ligand
pos_out_ligand_ligand_mask = c_skip_expanded * ligand_positions + c_out_expanded * pos_out_ligand
return x_final_ligand_ligand_mask, pos_out_ligand_ligand_mask
def model_forward_wrapper(
model: nn.Module,
x: Tensor,
mask: Tensor,
sigma: Tensor,
sigma_data: float = 0.5,
sigma_min: float = 0.002,
**kwargs: Any,
) -> Tensor:
"""Wrapper for the model call to ensure that the residual connection and scaling
for the residual and output values are applied.
Parameters
----------
model : nn.Module
Model to call.
x : Tensor
Input to the model, e.g: the noisy samples.
sigma : Tensor
Standard deviation of the noise. Normally referred to as t.
sigma_data : float, default=0.5
Standard deviation of the data.
sigma_min : float, default=0.002
Minimum standard deviation of the noise.
**kwargs : Any
Extra arguments to be passed during the model call.
Returns
-------
Tensor
Scaled output from the model with the residual connection applied.
"""
c_skip = skip_scaling(sigma, sigma_data, sigma_min)
c_out = output_scaling(sigma, sigma_data, sigma_min)
x_final_ligand, pos_out_ligand = model.consistency_model.estimator(x, sigma, mask)
ligand_features = x['ligand'].x[mask]
ligand_positions = x['ligand'].pos[mask]
x_final_ligand_ligand_mask = c_skip * ligand_features + c_out * x_final_ligand
pos_out_ligand_ligand_mask = c_skip * ligand_positions + c_out * pos_out_ligand
return x_final_ligand_ligand_mask, pos_out_ligand_ligand_mask
@dataclass
class LitConsistencyModelConfig:
initial_ema_decay_rate: float = 0.95
student_model_ema_decay_rate: float = 0.999943
lr: float = 1e-3
betas: Tuple[float, float] = (0.9, 0.995)
num_samples: int = 8
sigma_min: float = 0.002
sigma_max: float = 80.0
rho: float = 7.0
sigma_data: float = 0.5
initial_timesteps: int = 2
final_timesteps: int = 150
lr_patience: int = 100
lr_cooldown: int = 100
class LitConsistencyModel(LightningModule):
def __init__(
self,
consistency_training: ConsistencyTraining_DiffHopp,
consistency_sampling: ConsistencySamplingAndEditing_DiffHopp(),
student_model: ConsistencyDiffusionHoppingModel,
teacher_model: ConsistencyDiffusionHoppingModel,
# ema_student_model: ConsistencyDiffusionHoppingModel,
config: LitConsistencyModelConfig,
) -> None:
super().__init__()
self.consistency_training = consistency_training
# print("final timesteps for training are: ", consistency_training.final_timesteps)
self.consistency_sampling = consistency_sampling
self.student_model = student_model
self.teacher_model = teacher_model
self.config = config
self.num_timesteps = self.consistency_training.initial_timesteps
self.validation_metrics = None
self.molecule_builder = MoleculeBuilder(include_invalid=True)
self.next_analyse_samples = 50
self._run_validation = False
# Freeze teacher and EMA student models and set to eval mode
for param in self.teacher_model.parameters():
param.requires_grad = False
# for param in self.ema_student_model.parameters():
# param.requires_grad = False
self.teacher_model = self.teacher_model.eval()
# self.ema_student_model = self.ema_student_model.eval()
def setup_metrics(self, train_smiles):
self.validation_metrics = torch.nn.ModuleDict(
{
"Novelty": MolecularNovelty(train_smiles),
"Validity": MolecularValidity(),
"Connectivity": MolecularConnectivity(),
"Lipinski": MolecularLipinski(),
"LogP": MolecularLogP(),
"QED": MolecularQEDValue(),
"SAScore": MolecularSAScore(),
}
)
def training_step(self, batch , batch_idx: int) -> None:
batch_size = batch[0].size(0) if isinstance(batch, (list, tuple)) else batch.size(0)
x_output, pos_output = self.consistency_training(
self.student_model,
self.teacher_model,
batch,
self.global_step,
self.trainer.max_steps,
)
self.num_timesteps = x_output.num_timesteps
# batch_temp_pos_pred = batch['ligand'].pos.clone()
# batch_temp_pos_target = batch['ligand'].pos.clone()
# batch_temp_pos_pred[batch['ligand'].scaffold_mask] = pos_output.predicted
# batch_temp_pos_target[batch['ligand'].scaffold_mask] = pos_output.target
# pred_dismat=torch.cdist(batch_temp_pos_pred,batch_temp_pos_pred,compute_mode='donot_use_mm_for_euclid_dist')
# target_dismat=torch.cdist(batch_temp_pos_target,batch_temp_pos_target,compute_mode='donot_use_mm_for_euclid_dist')
x_loss = F.mse_loss(
x_output.predicted, x_output.target)
pos_loss = F.mse_loss(
pos_output.predicted, pos_output.target)
# dist_loss=F.mse_loss(pred_dismat,target_dismat)
# loss = lpips_loss + overflow_loss
# total_loss = x_loss + pos_loss + dist_loss
total_loss = x_loss + pos_loss
self.log_dict(
{
"train_total_loss": total_loss,
"x_loss": x_loss,
"pos_loss":pos_loss,
# "dist_loss":dist_loss,
"num_timesteps": x_output.num_timesteps,
},
on_epoch=True,
logger=True,
prog_bar=True,
batch_size= batch_size,
sync_dist = True
)
return total_loss
def on_train_batch_end(
self, outputs: Any, batch: Union[Tensor, List[Tensor]], batch_idx: int
) -> None:
# Update teacher model
ema_decay_rate = ema_decay_rate_schedule(
self.num_timesteps,
self.config.initial_ema_decay_rate,
self.consistency_training.initial_timesteps,
)
update_ema_model_(self.teacher_model, self.student_model, ema_decay_rate)
self.log_dict({"ema_decay_rate": ema_decay_rate}, sync_dist = True)
# # Update EMA student model
# update_ema_model_(
# self.ema_student_model,
# self.student_model,
# self.config.student_model_ema_decay_rate,
# )
#TODO sample할거면 이거 틀어야함
# if (
# (self.global_step + 1) % self.config.sample_every_n_steps == 0
# ) or self.global_step == 0:
# self.__sample_and_log_samples(batch, batch_idx)
#TODO sample validation step에서 하기로 함
def configure_optimizers(self):
opt = torch.optim.Adam(
self.student_model.parameters(), lr=self.config.lr, betas=self.config.betas
)
sched = torch.optim.lr_scheduler.ReduceLROnPlateau(
opt,
mode='min',
factor=0.9, patience=self.config.lr_patience,
threshold=0.0001, threshold_mode='rel',
cooldown=self.config.lr_cooldown,
min_lr=1e-06, eps=1e-06
)
sched = {"optimizer": opt, "scheduler": { "scheduler": sched, "monitor": "train_total_loss"}}
return sched
def on_validation_epoch_start(self) -> None:
self._run_validation = (self.current_epoch % self.next_analyse_samples) == 0
def validation_step(self, batch, batch_idx: int):
# Depending on your data loading, you may need to adjust this line as done in training_step
batch_size = batch[0].size(0) if isinstance(batch, (list, tuple)) else batch.size(0)
# Run the forward pass without consistency training logic if that's specific to training
x_output, pos_output = self.consistency_training(
self.student_model,
self.teacher_model,
batch,
self.global_step,
self.trainer.max_steps,
)
# batch_temp_pos_pred = batch['ligand'].pos.clone()
# batch_temp_pos_target = batch['ligand'].pos.clone()
# batch_temp_pos_pred[batch['ligand'].scaffold_mask] = pos_output.predicted
# batch_temp_pos_target[batch['ligand'].scaffold_mask] = pos_output.target
# pred_dismat=torch.cdist(batch_temp_pos_pred,batch_temp_pos_pred,compute_mode='donot_use_mm_for_euclid_dist')
# target_dismat=torch.cdist(batch_temp_pos_target,batch_temp_pos_target,compute_mode='donot_use_mm_for_euclid_dist')
# Calculate the losses similarly to the training_step
x_loss = F.mse_loss(x_output.predicted, x_output.target)
pos_loss = F.mse_loss(pos_output.predicted, pos_output.target)
# dist_loss= F.mse_loss(pred_dismat,target_dismat)
# total_loss = x_loss + pos_loss + dist_loss
total_loss = x_loss + pos_loss
self.log_dict({
"val_total_loss": total_loss,
"val_x_loss": x_loss,
"val_pos_loss": pos_loss,
# "val_dist_loss": dist_loss,
# Optionally include num_timesteps if it's relevant for validation
"num_timesteps": x_output.num_timesteps,
}, on_epoch=True, logger=True, prog_bar=True, batch_size=batch_size, sync_dist = True)
if self._run_validation:
self.analyse_samples(batch, batch_idx)
# Optionally return whatever you might need for validation_epoch_end hooks
return total_loss
@torch.no_grad()
def analyse_samples(self, batch, batch_idx) -> None:
with torch.no_grad():
sampling_sigmas = karras_schedule(
self.config.final_timesteps, self.config.sigma_min, self.config.sigma_max, self.config.rho, self.student_model.device
)
# if self.final_timesteps == 1:
# sampling_sigmas= reversed(sampling_sigmas)
# sampling_sigmas[-1] = 80
# else:
sampling_sigmas= reversed(sampling_sigmas)
# sampling_sigmas[-1] += 1e-8
sample_results = self.consistency_sampling(self.student_model,batch,sampling_sigmas)
final_output = sample_results[-1]
molecules = self.student_model.molecule_builder(final_output)
for k, metric in self.validation_metrics.items():
metric(molecules)
self.log(
f"{k}/val",
metric,
batch_size=batch.num_graphs,
sync_dist=True,
)
self.log_molecule_visualizations(molecules, batch_idx)
def log_molecule_visualizations(self, molecules, batch_idx):
images = []
captions = []
for i, mol in enumerate(molecules):
if mol is None:
continue
img = image_to_tensor(Draw.MolToImage(mol, size=(500, 500)))
images.append(img)
captions.append(f"{self.current_epoch}_{batch_idx}_{i}")
grid_image = make_grid(images)
for logger in self.loggers:
if isinstance(logger, pl.loggers.TensorBoardLogger):
logger.experiment.add_image(
f"log_image_{batch_idx}",
grid_image,
self.current_epoch,
)
if isinstance(logger, pl.loggers.WandbLogger):
logger.log_image(key="test_set_images", images=images, caption=captions)
@dataclass
class TrainingConfig:
model_config: Any
consistency_training: ConsistencyTraining_DiffHopp
consistency_sampling: ConsistencySamplingAndEditing_DiffHopp
lit_cm_config: LitConsistencyModelConfig
seed: int
ckpt_dir: str
wandb_dir: str
devices: List[int]
check_val_every_n_epoch: int
wandb_logging: bool
def __post_init__(self):
current_date = datetime.now().strftime("%Y%m%d")
self.model_ckpt_path = f"{self.ckpt_dir}/{current_date}/ver_dist_loss_gvp_{self.lit_cm_config.final_timesteps}"
def get_callbacks(model_ckpt_path):
latest_checkpoint = ModelCheckpoint(
dirpath=f"{model_ckpt_path}/step_best",
filename="latest-{epoch}-{step}",
every_n_epochs=50,
save_top_k=-1
)
return [latest_checkpoint]
def run_training(config):
seed_everything(config.seed)
if config.wandb_logging:
os.environ['WANDB_DIR'] = config.wandb_dir
run = wandb.init(project="diffusion_hopping_consistency")
else:
run = wandb.init(project="diffusion_hopping_consistency", mode="disabled")
student_model, _, teacher_model = get_consistency_models(T=config.lit_cm_config.final_timesteps)
lit_cm = LitConsistencyModel(
config.consistency_training,
config.consistency_sampling,
student_model,
teacher_model,
config.lit_cm_config,
)
wandb_logger = WandbLogger(experiment=run)
wandb_logger.watch(lit_cm)
# print("checkpoint path is: ", config.model_ckpt_path)
trainer = Trainer(
max_steps=1_000_000,
precision="32-true",
log_every_n_steps=1,
logger=wandb_logger,
accelerator="gpu",
callbacks=get_callbacks(config.model_ckpt_path),
devices=config.devices,
strategy='ddp' if len(config.devices)>1 else 'auto',
check_val_every_n_epoch=config.check_val_every_n_epoch,
default_root_dir=config.model_ckpt_path)
data_module = get_datamodule(
config.model_config.dataset_name,
batch_size=config.model_config.batch_size // trainer.num_devices,
data_dir=config.model_config.data_dir
)
data_module.setup(stage="fit")
lit_cm.setup_metrics(get_train_smiles_consistency(data_module.train_dataset))
trainer.fit(lit_cm, data_module.train_dataloader(), data_module.val_dataloader())
if __name__ == "__main__":
disable_obabel_and_rdkit_logging()
torch.set_float32_matmul_precision('medium')
parser = argparse.ArgumentParser(description='Training script for consistency models.')
parser.add_argument('--config', type=str, default='configs/config_consistency.yaml', help='Path to config file')
args = parser.parse_args()
# Load config from YAML
with open(args.config, 'r') as f:
yaml_config = yaml.safe_load(f)
# Create model config with explicit float conversion for numeric values
model_config = SimpleNamespace(
architecture=Architecture.GVP,
seed=int(yaml_config['seed']),
data_dir = yaml_config['model_config']['data_dir'],
dataset_name=yaml_config['model_config']['dataset_name'],
condition_on_fg=yaml_config['model_config']['condition_on_fg'],
batch_size=int(yaml_config['batch_size']),
T=int(yaml_config['final_timesteps']),
lr=float(yaml_config['model_config']['lr']),
num_layers=int(yaml_config['model_config']['num_layers']),
joint_features=int(yaml_config['model_config']['joint_features']),
hidden_features=int(yaml_config['model_config']['hidden_features']),
edge_cutoff=tuple(yaml_config['model_config']['edge_cutoff']),
attention=yaml_config['model_config']['attention']
)
# Create LitConsistencyModelConfig with explicit float conversion
lit_cm_config = LitConsistencyModelConfig(
initial_ema_decay_rate=float(yaml_config['lit_cm_config']['initial_ema_decay_rate']),
student_model_ema_decay_rate=float(yaml_config['lit_cm_config']['student_model_ema_decay_rate']),
lr=float(yaml_config['lit_cm_config']['lr']),
betas=tuple(float(x) for x in yaml_config['lit_cm_config']['betas']),
num_samples=int(yaml_config['lit_cm_config']['num_samples']),
sigma_min=float(yaml_config['lit_cm_config']['sigma_min']),
sigma_max=float(yaml_config['lit_cm_config']['sigma_max']),
rho=float(yaml_config['lit_cm_config']['rho']),
sigma_data=float(yaml_config['lit_cm_config']['sigma_data']),
initial_timesteps=int(yaml_config['lit_cm_config']['initial_timesteps']),
final_timesteps=int(yaml_config['final_timesteps']),
lr_patience=int(yaml_config['lit_cm_config']['lr_patience']),
lr_cooldown=int(yaml_config['lit_cm_config']['lr_cooldown'])
)
# Create final config
config = TrainingConfig(
model_config=model_config,
ckpt_dir=yaml_config['ckpt_dir'],
wandb_dir=yaml_config['wandb_dir'],
consistency_training=ConsistencyTraining_DiffHopp(final_timesteps=int(yaml_config['final_timesteps'])),
consistency_sampling=ConsistencySamplingAndEditing_DiffHopp(final_timesteps=int(yaml_config['final_timesteps'])),
lit_cm_config=lit_cm_config,
seed=int(yaml_config['seed']),
devices=yaml_config['devices'],
check_val_every_n_epoch=int(yaml_config['check_val_every_n_epoch']),
wandb_logging=yaml_config['wandb_logging']
)
run_training(config)