-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
56 lines (46 loc) · 1.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
from tma.objects import Observer, Target
from tma.model import Model
from tma.algorithms import Algorithms, Swarm
from tma.helper_functions import get_df, convert_to_xy
observer_x, observer_y, observer_course, observer_velocity = 0.0, 0.0, 0.0, 5.0
observer = Observer(
observer_x,
observer_y,
observer_course,
observer_velocity,
verbose=True,
)
target_bearing, target_distance, target_course, target_velocity = (
5.0,
20.0,
45.0,
10.0,
)
target = Target(
observer,
target_bearing,
target_distance,
target_course,
target_velocity,
verbose=True,
)
observer.forward_movement(3 * 60)
observer.change_course(270, "left", omega=0.5)
observer.forward_movement(5 * 60)
observer.change_course(90, "right", omega=0.5)
observer.forward_movement(3 * 60)
target.forward_movement(len(observer.coords[0]) - 1)
model = Model(observer, target=target, verbose=True, seed=1)
alg = Algorithms(model)
p0 = convert_to_xy([0.0, 25.0, 90.0, 7.0])
res = alg.mle_v2(p0)
alg.print_result(res)
swarm = Swarm(model, True)
swarm.set_algorithm("ММП")
swarm.set_target(target)
swarm.set_initial()
swarm.set_noise_func()
r = swarm.run()
print(observer)
print(target)