-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathtrain.py
104 lines (81 loc) · 3.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import random
import torch
import functools
import operator
import os
import json
from transform import load_and_transform
from torch_geometric.loader import DataLoader
from net import Net
import argparse
def shuffle_and_split(data_list, seed=0):
rng = random.Random(seed)
rng.shuffle(data_list)
N = int(len(data_list) * 0.90)
tr = data_list[:N]
ts = data_list[N:]
M = int(N * 0.90)
tr, vl = tr[:M], tr[M:]
return tr, vl, ts
def train(model, optimizer):
model.train()
epoch_loss = 0.0
for data in tr_loader:
optimizer.zero_grad()
out = torch.nn.functional.log_softmax(model(data.to(device)), dim=-1)
loss = torch.nn.functional.nll_loss(out, data.y)
epoch_loss += loss.item() / data.num_graphs
loss.backward()
optimizer.step()
return float(epoch_loss)
@torch.no_grad()
def test(model, loader):
model.eval()
accs = []
for data in loader:
out = model(data.to(device)).argmax(-1)
acc = (out == data.y).float().mean()
accs.append((acc, data.num_graphs))
accuracy = functools.reduce(operator.add,
[x[0] * x[1] for x in accs]) / functools.reduce(operator.add,
[x[1] for x in accs])
return accuracy
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", default='baselines/supervised/data')
parser.add_argument("--ckpt_dir", default='baselines/supervised/ckpt')
parser.add_argument("--num_hiddens", type=int, default=64)
parser.add_argument("--lr", type=float, default=0.01)
parser.add_argument("--num_epochs", type=int, default=200)
args = parser.parse_args()
tr, vl, ts = shuffle_and_split(
data_list=load_and_transform(args.data_dir, processed_dir=os.path.join(args.data_dir, 'processed')),
seed=0
)
tr_loader = DataLoader(dataset=tr, batch_size=32, shuffle=True)
vl_loader = DataLoader(dataset=vl, batch_size=len(vl))
ts_loader = DataLoader(dataset=ts, batch_size=len(ts))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
params = dict(
num_inputs=3,
num_hiddens=args.num_hiddens,
num_outputs=2
)
os.makedirs(args.ckpt_dir, exist_ok=True)
with open(os.path.join(args.ckpt_dir, 'config.json'), 'w') as f:
json.dump(params, f)
model = Net(**params).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=5e-3)
best_acc = 0
losses = []
for epoch in range(args.num_epochs):
loss = train(model, optimizer)
losses.append(loss)
train_acc, vl_acc = test(model, tr_loader), test(model, vl_loader)
if vl_acc > best_acc:
best_acc = vl_acc
torch.save(model.state_dict(), os.path.join(args.ckpt_dir, 'model.pth'))
print(f'Epoch: {epoch+1:03d}, Train: {train_acc:.4f}, Val: {vl_acc:.4f}')
model.load_state_dict(torch.load(os.path.join(args.ckpt_dir, 'model.pth')))
ts_acc = test(model, ts_loader)
print(f'Test: {ts_acc:.4f}')