-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_al.py
320 lines (255 loc) · 13.1 KB
/
main_al.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# Authors: O. Simeoni, M. Budnik, Y. Avrithis, G. Gravier, 2019
import os
import time
import random
import pickle
import numpy as np
import torch
import pdb
from tqdm import tqdm
from time import gmtime, strftime
from lib import checkpoints, parse_args, training, label_propagation, pretraining
from lib import models, datasets, cli, data
import lib.selection_methods as selection_methods
torch.manual_seed(7)
torch.cuda.manual_seed(7)
np.random.seed(7)
random.seed(7)
torch.backends.cudnn.deterministic=True
torch.backends.cudnn.benchmark = False
args = None
def apply_random_seed(seed, log_file):
if seed != 7:
print_log('SEED: changing seed to %d'%seed, log_file)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
def print_log(msg, log):
print(msg)
with open(log, 'a') as log:
log.write('%s\n' % msg)
def write_log_dist_class(dataset, labeled_idxs, log):
targets = [targ for i, targ in enumerate(dataset.targets) if i in labeled_idxs]
unique, counts = np.unique(targets, return_counts=True)
dic_target = dict(zip(unique, counts))
log.write('targets %s \n'% str(dic_target))
def create_folder(folder):
if not os.path.exists(folder):
os.makedirs(folder)
return folder
def load_unsupervised_pretrained_model(args):
root_dir = './models/pretrained/'
if 'mnist' in args.dataset:
pretraining_path = 'pretrained_mnist_cifar_cnn_lr0.02_batch_128_final.pickle'
elif 'svhn' in args.dataset:
pretraining_path = 'pretrained_svhn_cifar_cnn_lr0.02_batch_128_final.pickle'
elif 'cifar' in args.dataset:
pretraining_path = 'pretrained_cifar_cifar_cnn_lr0.02_batch_128_final.pickle'
else:
raise ValueError('No pretraining for this dataset')
pretraining_path = os.path.join(root_dir, pretraining_path)
with open(pretraining_path, 'rb') as f:
pretrain_w = pickle.load(f)
return pretrain_w
def main():
# -------------------------------------------------------------------------------
# Directories
dir_path = 'exps/'
method_str = args.al_method
if args.add_lp:
method_str += '_withLP'
if args.add_ceal:
method_str += '_withCEAL'
dir_path = create_folder(os.path.join(dir_path, args.dataset,
'budget%d'% args.al_budget,
args.arch, method_str,
parse_args.from_args_to_string(args), 'split%d' % args.split))
ckpt_dir = create_folder(os.path.join(dir_path, 'ckpt'))
label_dir = create_folder(os.path.join(dir_path, 'used_labels'))
log_dir = create_folder(os.path.join(dir_path, 'logs'))
weight_dir = create_folder(os.path.join(log_dir, 'weights'))
# -------------------------------------------------------------------------------
# Check dataset exists
data_root = 'data/'
labels_file = os.path.join(data_root,
'labels/%s/%d_balanced_labels/0%d.txt' % (args.dataset,
args.al_budget,
args.split))
args.labels = labels_file
if not os.path.exists(labels_file):
raise ValueError('Non existing label file %s' % labels_file)
# Dataset
dataset_config = datasets.__dict__[args.dataset]()
num_classes = dataset_config.pop('num_classes')
train_loader, train_loader_noshuff, eval_loader,\
labeled_idxs, unlabeled_idxs, dataset, \
test_loader, batch_sampler = training.create_data_loaders(args=args, \
**dataset_config)
if args.add_ceal:
ceal_pseudo_labels_idxs = list()
# Logging
results_file = os.path.join(log_dir, 'results.csv')
test_results_file = os.path.join(log_dir, 'test_results.csv')
log_file = os.path.join(log_dir, '%s_%s.txt' % (strftime("%Y-%m-%d_%H-%M-%S", gmtime()),
args.exp_name))
print_log('Log will be saved to %s' % log_file, log_file)
print_log('Results will be saved to %s' % results_file, log_file)
print_log('\nArgs: ', log_file)
print_log(str(args) + '\n', log_file)
with open(log_file, 'a') as log:
write_log_dist_class(dataset, labeled_idxs, log)
# Select random seed
apply_random_seed(args.seed, log_file)
# AL method
al_method = parse_args.get_method(args)
# ------------------------------------------------------------------------
# Pretrained model in an unsupervised fashion
if args.add_unsupervised_pretraining:
# Pretrain a model from scratch
if args.learn_unsupervised_pretraining:
pretrain_w = pretraining.pretrain(args, dataset, num_classes, train_loader_noshuff)
# Select one of the pretrained models used in the paper.
else:
pretrain_w = load_unsupervised_pretrained_model(args)
# ------------------------------------------------------------------------
# RESUMING
r_cycle = -1
if args.resume:
r_cycle, r_epoch = checkpoints.get_checkpoint_cycle_epoch(ckpt_dir)
r_labels = checkpoints.load_labels(r_cycle, label_dir)
continue_training = True
if r_cycle == -1 or r_epoch == -1:
continue_training = False
else:
print_log('----------------------------------', log_file)
print_log('RESUMING: from cycle %d and epoch %d'%(r_cycle, r_epoch), log_file)
# In case training of a cycle was finished, check if labels were generated properly
if r_epoch == (args.epochs - 1):
print_log('Going to next cycle', log_file)
r_labels_next_cycle = checkpoints.load_labels(r_cycle+1, label_dir)
# If resuming labels exist go to next cycle
if r_labels_next_cycle:
r_cycle += 1
r_labels = r_labels_next_cycle
continue_training = False
print_log('RESUMING: Going to next cycle %d'%(r_cycle), log_file)
if r_labels:
print_log('RESUMING: Updating the dataset and generating new train_loader', log_file)
labeled_idxs = r_labels
unlabeled_idxs = data.update_dataset_resuming(dataset, labeled_idxs)
if args.add_lp:
print_log('Create dummy pseudo_label_idx', log_file)
dataset.pseudo_label_idx = dataset.unlabeled_idxs
train_loader = training.get_train_loader(args, dataset)
if args.add_lp and args.lp_mode != 'full' and \
(r_epoch > 0 and continue_training):
raise ValueError('Not implemented.')
elif r_cycle > 0:
raise ValueError('Should have new set of labels')
# ------------------------------------------------------------------------
# CYCLE
for cycle in range(max(r_cycle, 0), args.al_nb_cycles):
print_log('AL cycle %d' % cycle, log_file)
model = models.create_model(args, num_classes)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=args.nesterov)
# Pretraining
if args.add_unsupervised_pretraining:
print_log('Use model pretrained in an unsupervised fashion', log_file)
model_dict = model.state_dict()
model_dict.update(pretrain_w)
model.load_state_dict(model_dict)
# Resuming from previous checkpoint if exists
start_epoch = 0
if args.resume:
if continue_training:
start_epoch = r_epoch
if r_epoch > 0 and r_cycle == cycle and continue_training:
r_cycle, r_epoch, model, optimizer = checkpoints.load_checkpoint(model, optimizer,
ckpt_dir, cycle)
print_log('RESUMING: weights model from cycle %d and epoch %d'% (r_cycle,
r_epoch),
log_file)
epoch = r_epoch
start_epoch = r_epoch + 1
if args.finetuning and cycle != 0:
model = checkpoints.load_checkpoint_finetuning(model, ckpt_dir, cycle-1)
print('Using pretrained model')
# Apply first label propagation
if args.add_lp:
print_log('Label propagation: Starting diffusion', log_file)
# Extract features
feats, labels, preds = models.extract_features(train_loader_noshuff, model)
# Apply label propagation
lp = label_propagation.LP()
sel_acc, sel_n = lp.update_lp(feats, preds, dataset, thresh=args.tau,
args=args, w_mode=args.is_cW)
if args.weighted_unlabeled_batch:
batch_sampler.update_weights(np.array(dataset.p_weights)[unlabeled_idxs])
elif args.lp_mode != 'full':
print_log('Updating %d pseudo labels in the batch' % len(dataset.pseudo_label_idx), log_file)
batch_sampler.update_pseudo_indices(dataset.pseudo_label_idx, same_length=False)
# ------------------------------------------------------------------------
# CYCLE TRAINING
for epoch in tqdm(range(start_epoch, args.epochs)):
# Train the model
models.train(train_loader, model, optimizer, epoch, args)
# Apply label propagation if needed
if args.add_lp and epoch > args.start_epoch and epoch % args.lp_step == 0:
print_log('Label propagation applied epoch {}'.format(epoch), log_file)
# Extract features
feats, labels, preds = models.extract_features(train_loader_noshuff, model)
# Apply label propagation
sel_acc, sel_n = lp.update_lp(feats, preds, dataset, thresh=args.tau,
args=args, w_mode=args.is_cW)
if args.weighted_unlabeled_batch:
batch_sampler.update_weights(np.array(dataset.p_weights)[unlabeled_idxs])
elif args.lp_mode != 'full':
print_log('Updating %d pseudo labels in the batch'%len(dataset.pseudo_label_idx), log_file)
batch_sampler.update_pseudo_indices(dataset.pseudo_label_idx)
# Save models
if epoch % args.checkpoint_epochs == 0 or epoch == args.epochs-1:
checkpoints.save_checkpoint(model, optimizer, ckpt_dir, cycle, epoch)
#---------------------------
#------- Evaluation -------
#---------------------------
with open(log_file, 'a') as log:
write_log_dist_class(dataset, labeled_idxs, log)
# TODO Change validation
if args.use_val_set:
with open(results_file, 'a') as log_results:
models.validate(eval_loader, model, epoch, log, cycle, log_results, 'Val set')
# Model Evaluation
with open(test_results_file, 'a') as log_test_results:
models.validate(test_loader, model, epoch, log, cycle, log_test_results, 'Test set')
# Removing labels used for ceal before the selection
if args.add_ceal:
data.remove_semi_labels(dataset, ceal_pseudo_labels_idxs)
# Perform the selection using the selected AL method
selection_method = al_method(model)
selected = selection_method.select(train_loader_noshuff, dataset,
args.al_budget, args=args)
# Check
if set(selected).intersection(set(labeled_idxs)) or len(set(selected)) != args.al_budget:
raise ValueError("Selection is not correct")
# Update the dataset with the newly selected images
labeled_idxs, unlabeled_idxs = data.update_dataset(dataset, selected, labeled_idxs)
# Save the selected images - used for next cycle
print_log('%d selected images saved'%(len(selected)), log_file)
checkpoints.write_labels(labeled_idxs, cycle+1, label_dir)
continue_training = False
# Apply CEAL - used for next cycle
if args.add_ceal:
print_log('Applying CEAL', log_file)
ceal_method = selection_methods.CEAL(model)
ceal_pseudo_labels_idxs, ceal_pseudo_labels = ceal_method.select(train_loader_noshuff, dataset,
args.ceal_th, 0.00033, cycle)
# Update the dataset
data.update_dataset_semi(dataset, ceal_pseudo_labels_idxs, ceal_pseudo_labels)
if __name__ == '__main__':
args = cli.parse_commandline_args()
args.test_batch_size = args.batch_size
main()