-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoutcome_hypoxia_hyperoxia.m
240 lines (185 loc) · 7.45 KB
/
outcome_hypoxia_hyperoxia.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
%-------------------------------------------------------------------------------
% outcome_hypoxia_hyperoxia: simple analysis on large NIRS dataset (120+ babies)
%
% Syntax: [sum_st]=simple_analysis_3dataset(all_info)
%
% Inputs:
% all_info - NIRS data structure with the following fields:
%
% baby_ID: '1'
% DOB_time: '14-Sep-2015 01:16:00'
% GA: 203
% outcome: 2
% nirs_time: [10463x1 double]
% nirs_data: [10463x1 double]
%
% [default = use gen_random_NIRS_data.m to generate placeholder data]
%
% Example
% >> outcome_hypoxia_hyperoxia;
%
% Requires:
% Matlab (> R2013a) and Statistics toolbox (> v8.2);
% functions: gen_random_NIRS_data, holm_p_correction,
% cal_area_above_below, print_table.
% John M. O' Toole, University College Cork
% Started: 30-10-2014
%
% last update: Time-stamp: <2017-11-13 17:46:48 (otoolej)>
%-------------------------------------------------------------------------------
function [sum_st]=outcome_hypoxia_hyperoxia(all_info)
if(nargin<1 || isempty(all_info))
all_info=gen_random_NIRS_data(120);
end
N_babies=length(all_info);
%---------------------------------------------------------------------
% 1) tidy up rcSO2 recordings
%---------------------------------------------------------------------
irem=[];
low_cum_total=0; N_cum_total=0;
for n=1:N_babies
full_nirs_data=all_info(n).nirs_data(:);
full_nirs_time=all_info(n).nirs_time(:);
mean_fs=nanmean(diff(full_nirs_time))*(24*60*60);
% a) remove 15% values (assume not recording):
ilow=find(full_nirs_data==15);
low_cum_total=low_cum_total+length(ilow);
N_cum_total=N_cum_total+length(full_nirs_data);
art_mask=zeros(1,length(full_nirs_data));
if(~isempty(ilow))
art_mask(ilow)=1;
art_mask=collar_mask(art_mask,ceil(30/mean_fs));
irr=find(art_mask==1);
full_nirs_data(irr)=NaN;
end
[full_nirs_data,full_nirs_time]=trim_nans_start_end(full_nirs_data,full_nirs_time);
tob=datenum(all_info(n).DOB_time);
nirs_time_secs=(full_nirs_time-tob).*(24*60*60);
% b) remove if less than 48 hours:
iup_limit=find(nirs_time_secs>48*60*60);
if(~isempty(iup_limit))
nirs_time_secs(iup_limit)=[];
full_nirs_data(iup_limit)=[];
end
% c) remove babies if recordings start after 48 hours:
if(all(isnan(nirs_time_secs)))
irem=[irem n];
fprintf('REMOVING baby because recording starts >48hours: %s\n', ...
all_info(n).baby_ID);
end
[full_nirs_data,nirs_time_secs]=trim_nans_start_end(full_nirs_data,nirs_time_secs);
all_info(n).nirs_time=nirs_time_secs;
all_info(n).nirs_data=full_nirs_data;
end
all_info(irem)=[];
N_babies=length(all_info);
fprintf('UPDATE: number of babies=%d\n',N_babies);
% stats on duration of data:
for n=1:N_babies
all_info(n).total_data_length_hours= ...
(all_info(n).nirs_time(end)-all_info(n).nirs_time(1))./(60*60);
full_nirs_data=all_info(n).nirs_data;
all_info(n).prc_NaNs=100*(length(full_nirs_data(isnan(full_nirs_data)))) ...
/ length(full_nirs_data);
end
%---------------------------------------------------------------------
% 2. generate simple descriptors for the data
%---------------------------------------------------------------------
for n=1:N_babies
sum_st(n).baby_ID=all_info(n).baby_ID;
sum_st(n).outcome=all_info(n).outcome;
sum_st(n).GA=(all_info(n).GA)./7;
dd=[all_info(n).nirs_data];
[sum_st,N]=simp_stats(dd,sum_st,n,all_info(n).nirs_time);
end
%---------------------------------------------------------------------
% 3. group into good/bad outcome
%---------------------------------------------------------------------
igood=find([sum_st.outcome]==1); imoderate=find([sum_st.outcome]==2);
isevere=find([sum_st.outcome]==3);
fprintf('OUTCOME: good, n=%d; moderate, n=%d; severe, n=%d\n', ...
length(igood),length(imoderate),length(isevere));
icombined=[igood imoderate isevere];
fn=fieldnames(sum_st);
fn(find(strcmp(fn,'baby_ID')))=[];
fn(find(strcmp(fn,'outcome')))=[];
fn(find(strcmp(fn,'GA')))=[];
N_feats=length(fn);
% b. do plot:
for n=1:N_feats
feat_good{n}=[sum_st(igood).(char(fn{n}))];
feat_moderate{n} =[sum_st(imoderate).(char(fn{n}))];
feat_severe{n} =[sum_st(isevere).(char(fn{n}))];
end
%---------------------------------------------------------------------
% do stats:
%---------------------------------------------------------------------
A=[];
for n=1:N_feats
feat_name{n}=char(fn{n});
feat_str{n}=modify_str(feat_name{n});
meds(n,1)=nanmedian([sum_st(igood).(char(fn{n}))]);
meds(n,2)=nanmedian([sum_st(imoderate).(char(fn{n}))]);
meds(n,3)=nanmedian([sum_st(isevere).(char(fn{n}))]);
miqr(n,1,:)=prctile([sum_st(igood).(char(fn{n}))],[25 75]);
miqr(n,2,:)=prctile([sum_st(imoderate).(char(fn{n}))],[25 75]);
miqr(n,3,:)=prctile([sum_st(isevere).(char(fn{n}))],[25 75]);
x=[ [sum_st(igood).(char(fn{n}))] [sum_st(imoderate).(char(fn{n}))] ...
[sum_st(isevere).(char(fn{n}))] ];
groups=[ repmat({'good'},1,length(igood)) repmat({'moderate'},1,length(imoderate)) ...
repmat({'severe'},1,length(isevere)) ];
[p,tbl,stats]=kruskalwallis(x,groups,'off');
p_ind(1)=ranksum([sum_st(igood).(char(fn{n}))], [sum_st(imoderate).(char(fn{n}))]);
p_ind(2)=ranksum([sum_st(imoderate).(char(fn{n}))], [sum_st(isevere).(char(fn{n}))]);
p_ind(3)=ranksum([sum_st(igood).(char(fn{n}))], [sum_st(isevere).(char(fn{n}))]);
p_adj=holm_p_correction(p_ind);
p_values(n)=p;
for p=1:3
A{n,4+p}=sprintf('%.2f (%.2f to %.2f)',meds(n,p),miqr(n,p,:));
end
A{n,1}=sprintf('%.3f',p_values(n));
for p=1:3
A{n,1+p}=sprintf('%.3f (%.2f)',p_adj(p),p_ind(p));
end
end
fprintf('\n* features and association with outcome\n\n');
print_table(A',feat_str,{'P-value: 3 groups','P-value: good vs. mild', ...
'P-value: mild vs. severe', ...
'P-value: good vs. severe','good', ...
'mild','moderate/severe'},[26 26 24]);
function [sum_st,N]=simp_stats(x,sum_st,n,t)
%---------------------------------------------------------------------
% generate some statistics on data
%---------------------------------------------------------------------
x_all=x;
x(isnan(x))=[];
N=length(x);
low_thres=55; high_thres=85;
if(sum_st(n).GA>=28)
low_thres=low_thres+5;
high_thres=high_thres+5;
end
[a_below,a_above]=cal_area_above_below(t,x_all,low_thres,high_thres);
if(isnan(a_below))
keyboard;
end
sum_st(n).area_bel55=log(a_below+eps);
sum_st(n).area_ab85 =log(a_above+eps);
function x=modify_str(x)
%---------------------------------------------------------------------
% proper text for string
%---------------------------------------------------------------------
x=strrep(x,'area_bel55','log(AREA <55/60 rcSO2)');
x=strrep(x,'area_ab85','log(AREA >85/90 rcSO2)');
function [data,time]=trim_nans_start_end(data,time)
%---------------------------------------------------------------------
% remove blocks of continuous NaNs at start and end of sequence
%---------------------------------------------------------------------
istart=find(~isnan(data),1,'first');
iend=find(~isnan(data),1,'last');
data=data(istart:iend);
if(nargin>1)
time=time(istart:iend);
else
time=[];
end