-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn_model.py
41 lines (34 loc) · 1.45 KB
/
rnn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import parl
class RNNModel(parl.Model):
def __init__(self, input_shape, n_actions, rnn_hidden_dim=64):
super(RNNModel, self).__init__()
self.rnn_hidden_dim = rnn_hidden_dim
self.fc1 = nn.Linear(input_shape, rnn_hidden_dim)
self.rnn = nn.GRUCell(
input_size=rnn_hidden_dim, hidden_size=rnn_hidden_dim)
self.fc2 = nn.Linear(rnn_hidden_dim, n_actions)
def init_hidden(self):
hidden_state = paddle.zeros((1, self.rnn_hidden_dim), dtype='float32')
return hidden_state
def forward(self, inputs, hidden_state):
x = F.relu(self.fc1(inputs))
h_in = hidden_state.reshape(shape=(-1, self.rnn_hidden_dim))
_, h = self.rnn(x, h_in)
q = self.fc2(h) # (batch_size, n_actions)
return q, h