forked from caelusweb3/MLCodeGenerator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsidebar.py
62 lines (45 loc) · 1.9 KB
/
sidebar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
"""
Shows the sidebar for the streamlit app and manages all user inputs.
"""
import streamlit as st
# Define possible models in a dict.
# Format of the dict:
# option 1: framework -> model -> code
# option 2 – if model has multiple variants: framework -> model -> model variant -> code
MODELS = {
"scikit-learn": {
"Support vectors": "sklearn.svm.SVC",
"Random forest": "sklearn.ensemble.RandomForestClassifier",
"K-nearest neighbors": "sklearn.neighbors.KNeighborsClassifier",
"Decision tree": "sklearn.tree.DecisionTreeClassifier",
},
}
classifier_list = ["Random forest","Support vectors","XGBclassifier","Decision tree","Logistic Regression"]
def show():
"""Shows the side bar and returns user inputs as dict."""
inputs = {}
with st.sidebar:
st.write("## Task")
inputs["task"] = st.selectbox(
"Which problem do you want to solve?",
("Classification", "Regression"),
)
if inputs["task"] == "Regression":
st.write(
"Coming soon! [Mail me](mailto:johannes.rieke@gmail.com) what you need."
)
else:
st.write("## Model")
framework = st.multiselect('Choose Classfier',classifier_list)
inputs["classifier"] = framework
st.write("## Input Type")
input_type = st.selectbox('Choose Input Type',['csv','pickle'])
inputs["input_type"] = input_type
st.write("## Scaler ")
scaler_type = st.selectbox('Choose Scaler',['Standard Scaler','Min Max Scaler'])
inputs["scaler_type"] = scaler_type
st.write("## Evaluation")
evaluations = st.multiselect('Choose Evaluations',["Confusion Matrix","Classification Report","Metrics"])
st.checkbox('YellowBrick Visualization')
inputs["evaluations"] = evaluations
return inputs