forked from udacity/CarND-Vehicle-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
229 lines (175 loc) · 7.83 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import cv2
import numpy as np
import pickle
from classifier import get_hog_features
from moviepy.editor import VideoFileClip
from scipy.ndimage.measurements import label
from utilities import bin_spatial, color_hist, convert_color
MAX_LOOK_BACK = 20
class Cars:
def __init__(self):
self.bounding_boxes = []
def add_cars(self, boxes):
self.bounding_boxes.append(boxes)
if (len(self.bounding_boxes) > MAX_LOOK_BACK):
self.bounding_boxes = self.bounding_boxes[len(self.bounding_boxes) - MAX_LOOK_BACK : ]
# Define a single function that can extract features using hog sub-sampling and make predictions
def find_cars(img,
ystart,
ystop,
scale,
svc,
X_scaler,
orient,
pix_per_cell,
cell_per_block,
spatial_size,
hist_bins):
bounding_boxes = []
# draw_img = np.copy(img)
img = img.astype(np.float32) / 255
img_tosearch = img[ystart:ystop, :, :]
ctrans_tosearch = convert_color(img_tosearch, conv='RGB2YCrCb')
if scale != 1:
imshape = ctrans_tosearch.shape
ctrans_tosearch = cv2.resize(ctrans_tosearch, (np.int(imshape[1] / scale), np.int(imshape[0] / scale)))
ch1 = ctrans_tosearch[:, :, 0]
ch2 = ctrans_tosearch[:, :, 1]
ch3 = ctrans_tosearch[:, :, 2]
# Define blocks and steps as above
nxblocks = (ch1.shape[1] // pix_per_cell) - 1
nyblocks = (ch1.shape[0] // pix_per_cell) - 1
nfeat_per_block = orient * cell_per_block ** 2
# 64 was the original sampling rate, with 8 cells and 8 pix per cell
window = 64
nblocks_per_window = (window // pix_per_cell) - 1
cells_per_step = 2 # Instead of overlap, define how many cells to step
nxsteps = (nxblocks - nblocks_per_window) // cells_per_step
nysteps = (nyblocks - nblocks_per_window) // cells_per_step
# Compute individual channel HOG features for the entire image
hog1 = get_hog_features(ch1, orient, pix_per_cell, cell_per_block, feature_vec=False)
hog2 = get_hog_features(ch2, orient, pix_per_cell, cell_per_block, feature_vec=False)
hog3 = get_hog_features(ch3, orient, pix_per_cell, cell_per_block, feature_vec=False)
for xb in range(nxsteps):
for yb in range(nysteps):
ypos = yb * cells_per_step
xpos = xb * cells_per_step
# Extract HOG for this patch
hog_feat1 = hog1[ypos:ypos + nblocks_per_window, xpos:xpos + nblocks_per_window].ravel()
hog_feat2 = hog2[ypos:ypos + nblocks_per_window, xpos:xpos + nblocks_per_window].ravel()
hog_feat3 = hog3[ypos:ypos + nblocks_per_window, xpos:xpos + nblocks_per_window].ravel()
hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3))
xleft = xpos * pix_per_cell
ytop = ypos * pix_per_cell
# Extract the image patch
subimg = cv2.resize(ctrans_tosearch[ytop:ytop + window, xleft:xleft + window], (64, 64))
# Get color features
spatial_features = bin_spatial(subimg, size=spatial_size)
hist_features = color_hist(subimg, nbins=hist_bins)
# Scale features and make a prediction
test_features = X_scaler.transform(
np.hstack((spatial_features, hist_features, hog_features)).reshape(1, -1))
# test_features = X_scaler.transform(np.hstack((shape_feat, hist_feat)).reshape(1, -1))
test_prediction = svc.predict(test_features)
if test_prediction == 1:
xbox_left = np.int(xleft * scale)
ytop_draw = np.int(ytop * scale)
win_draw = np.int(window * scale)
# cv2.rectangle(draw_img,
# (xbox_left, ytop_draw + ystart),
# (xbox_left + win_draw, ytop_draw + win_draw + ystart),
# (0, 0, 255), 6)
bounding_boxes.append((
(xbox_left, ytop_draw + ystart),
(xbox_left + win_draw, ytop_draw + win_draw + ystart)
))
return bounding_boxes
def add_heat(heatmap, bbox_list):
# Iterate through list of bboxes
for box in bbox_list:
# Add += 1 for all pixels inside each bbox
# Assuming each "box" takes the form ((x1, y1), (x2, y2))
heatmap[box[0][1]:box[1][1], box[0][0]:box[1][0]] += 1
# Return updated heatmap
return heatmap# Iterate through list of bboxes
def apply_threshold(heatmap, threshold):
# Zero out pixels below the threshold
heatmap[heatmap <= threshold] = 0
# Return thresholded map
return heatmap
def draw_heatmap_img(image, box_list):
heat = np.zeros_like(image[:, :, 0]).astype(np.float)
# Add heat to each box in box list
heat = add_heat(heat, box_list)
# Apply threshold to help remove false positives
heat = apply_threshold(heat, 1)
# Visualize the heatmap when displaying
heatmap = np.clip(heat, 0, 255)
return heatmap
def draw_labeled_bboxes(img, labels):
# Iterate through all detected cars
for car_number in range(1, labels[1]+1):
# Find pixels with each car_number label value
nonzero = (labels[0] == car_number).nonzero()
# Identify x and y values of those pixels
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Define a bounding box based on min/max x and y
bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy)))
# Draw the box on the image
cv2.rectangle(img, bbox[0], bbox[1], (0,0,255), 6)
# Return the image
return img
def get_classifier():
dist_pickle = pickle.load(open("svc_pickle.p", "rb"))
svc = dist_pickle["svc"]
X_scaler = dist_pickle["scaler"]
orient = dist_pickle["orient"]
pix_per_cell = dist_pickle["pix_per_cell"]
cell_per_block = dist_pickle["cell_per_block"]
spatial_size = dist_pickle["spatial_size"]
hist_bins = dist_pickle["hist_bins"]
return cell_per_block, hist_bins, orient, pix_per_cell, spatial_size, svc, X_scaler
def process_image(image):
global cars
cell_per_block, hist_bins, orient, pix_per_cell, spatial_size, svc, X_scaler = get_classifier()
bounding_boxes = []
# (ystart, ystop, scale)
window_searches = [
(400, 528, 1.0),
(400, 656, 1.5),
(464, 656, 1.75)
]
for ystart, ystop, scale in window_searches:
bounding_boxes.extend(find_cars(image,
ystart,
ystop,
scale,
svc,
X_scaler,
orient,
pix_per_cell,
cell_per_block,
spatial_size,
hist_bins))
if (len(bounding_boxes)):
cars.add_cars(bounding_boxes)
# Bring on the heat
heat = np.zeros_like(image[:, :, 0]).astype(np.float)
# Add heat to each box in box list
for bounding_box in cars.bounding_boxes:
heat = add_heat(heat, bounding_box)
# Apply threshold to help remove false positives
heat = apply_threshold(heat, 14)
# Visualize the heatmap when displaying
heatmap = np.clip(heat, 0, 255)
# Find final boxes from heatmap using label function
labels = label(heatmap)
draw_img = draw_labeled_bboxes(np.copy(image), labels)
return draw_img
if __name__ == "__main__":
cars = Cars()
video_output = 'final_output.mp4'
clip1 = VideoFileClip("project_video.mp4")
output_video = clip1.fl_image(process_image) #NOTE: this function expects color images!!
output_video.write_videofile(video_output, audio=False)