-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathtrain.py
executable file
·168 lines (141 loc) · 6.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from __future__ import print_function
import argparse
import json
import chainer
from chainer import training
from chainer.training import extensions
import chain_utils
import nets
from text_classification.nlp_utils import convert_seq
from text_classification import text_datasets
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', '-g', type=int, default=-1,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--out', '-o', default='result',
help='Directory to output the result')
parser.add_argument('--batchsize', '-b', type=int, default=32,
help='Number of examples in each mini-batch')
parser.add_argument('--epoch', '-e', type=int, default=5,
help='Number of sweeps over the dataset to train')
parser.add_argument('--gradclip', '-c', type=float, default=10,
help='Gradient norm threshold to clip')
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--unit', '-u', type=int, default=1024,
help='Number of LSTM units in each layer')
parser.add_argument('--layer', type=int, default=2)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--vocab', required=True)
parser.add_argument('--train-path', '--train')
parser.add_argument('--valid-path', '--valid')
parser.add_argument('--resume')
parser.add_argument('--labeled-dataset', '-ldata', default=None,
choices=['dbpedia', 'imdb.binary', 'imdb.fine',
'TREC', 'stsa.binary', 'stsa.fine',
'custrev', 'mpqa', 'rt-polarity', 'subj'],
help='Name of dataset.')
parser.add_argument('--no-label', action='store_true')
parser.add_argument('--validation', action='store_true')
args = parser.parse_args()
print(json.dumps(args.__dict__, indent=2))
vocab = json.load(open(args.vocab))
if args.labeled_dataset:
if args.labeled_dataset == 'dbpedia':
train, valid, _ = text_datasets.get_dbpedia(
vocab=vocab)
elif args.labeled_dataset.startswith('imdb.'):
train, valid, _ = text_datasets.get_imdb(
fine_grained=args.labeled_dataset.endswith('.fine'),
vocab=vocab)
elif args.labeled_dataset in ['TREC', 'stsa.binary', 'stsa.fine',
'custrev', 'mpqa', 'rt-polarity', 'subj']:
train, valid, _ = text_datasets.get_other_text_dataset(
args.labeled_dataset,
vocab=vocab)
if args.validation:
train, valid = \
chainer.datasets.get_cross_validation_datasets_random(
train, 10, seed=777)[0]
else:
print('do not use test dataset. pls use validation split.')
else:
train = chain_utils.SequenceChainDataset(
args.train_path, vocab, chain_length=1)
valid = chain_utils.SequenceChainDataset(
args.valid_path, vocab, chain_length=1)
print('#train =', len(train))
print('#valid =', len(valid))
print('#vocab =', len(vocab))
# Create the dataset iterators
train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
valid_iter = chainer.iterators.SerialIterator(valid, args.batchsize,
repeat=False, shuffle=False)
# Prepare an biRNNLM model
model = nets.BiLanguageModel(
len(vocab), args.unit, args.layer, args.dropout)
if args.resume:
print('load {}'.format(args.resume))
chainer.serializers.load_npz(args.resume, model)
if args.labeled_dataset and not args.no_label:
n_labels = len(set([int(v[1]) for v in valid]))
print('# labels =', n_labels)
model.add_label_condition_nets(n_labels, args.unit)
if args.gpu >= 0:
chainer.cuda.get_device_from_id(args.gpu).use()
model.to_gpu()
# Set up an optimizer
optimizer = chainer.optimizers.Adam(alpha=args.lr)
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer.GradientClipping(args.gradclip))
iter_per_epoch = len(train) // args.batchsize
print('{} iters per epoch'.format(iter_per_epoch))
if iter_per_epoch >= 10000:
log_trigger = (iter_per_epoch // 100, 'iteration')
eval_trigger = (log_trigger[0] * 50, 'iteration') # every half epoch
else:
log_trigger = (iter_per_epoch // 2, 'iteration')
eval_trigger = (log_trigger[0] * 2, 'iteration') # every epoch
print('log and eval are scheduled at every {} and {}'.format(
log_trigger, eval_trigger))
if args.labeled_dataset:
updater = training.StandardUpdater(
train_iter, optimizer,
converter=convert_seq, device=args.gpu,
loss_func=model.calculate_loss_with_labels)
trainer = training.Trainer(
updater, (args.epoch, 'epoch'), out=args.out)
trainer.extend(extensions.Evaluator(
valid_iter, model,
converter=convert_seq, device=args.gpu,
eval_func=model.calculate_loss_with_labels),
trigger=eval_trigger)
else:
updater = training.StandardUpdater(
train_iter, optimizer,
converter=chain_utils.convert_sequence_chain, device=args.gpu,
loss_func=model.calculate_loss)
trainer = training.Trainer(
updater, (args.epoch, 'epoch'), out=args.out)
trainer.extend(extensions.Evaluator(
valid_iter, model,
converter=chain_utils.convert_sequence_chain, device=args.gpu,
eval_func=model.calculate_loss),
trigger=eval_trigger)
record_trigger = training.triggers.MinValueTrigger(
'validation/main/perp',
trigger=eval_trigger)
trainer.extend(extensions.snapshot_object(
model, 'best_model.npz'),
trigger=record_trigger)
trainer.extend(extensions.LogReport(trigger=log_trigger),
trigger=log_trigger)
keys = ['epoch', 'iteration',
'main/perp', 'validation/main/perp', 'elapsed_time']
trainer.extend(extensions.PrintReport(keys),
trigger=log_trigger)
trainer.extend(extensions.ProgressBar(update_interval=50))
print('iter/epoch', iter_per_epoch)
print('Training start')
trainer.run()
if __name__ == '__main__':
main()