-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
330 lines (252 loc) · 12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import time
import math
import argparse
import warnings
import numpy as np
from functools import partial
from torch.utils.tensorboard import SummaryWriter
from monitors.metrics import write_metrics
import lr_scheduler
import utils
from models.imagenet_presnet import PreActResNet18
from models.glouncv.alexnet import alexnet
from models.glouncv.preresnet import preresnet34
from models.glouncv.mobilenetv2 import mobilenetv2_w1
from models.cifar100_presnet import preact_resnet32_cifar
parser = argparse.ArgumentParser(description='PyTorch ImageNet/CIFAR Training')
parser.add_argument('--lr', default=0.1, type=float, help='Main learning rate')
parser.add_argument('--warmup_lr', default=0.001, type=float, help='Warmup learning rate')
parser.add_argument('--wd', default=1e-4, type=float, help='weight decay')
parser.add_argument('--bit', default=4, type=int, help='bit-width for UniQ quantizer')
parser.add_argument('--dataset', default='imagenette', type=str,
help='dataset name for training')
parser.add_argument('--data_root', default = '/soc_local/data/pytorch/imagenet/', type=str,
help='path to dataset')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--arch', default='resnet18', type=str,
choices=['presnet18', 'presnet32', 'glouncv-presnet34', 'glouncv-mobilenetv2_w1'],
help='network architecture')
parser.add_argument('--init_from', type=str,
help='init weights from from checkpoint')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--epochs', default=120, type=int, help='number of training epochs')
parser.add_argument('--train_id', type=str, default= 'train-01',
help='training id, is used for collect experiment results')
parser.add_argument('--train_scheme', type=str, default= 'fp32', choices=['fp32', 'uniq'],
help='Training scheme')
parser.add_argument('--optimizer', type=str, default= 'sgd', choices=['sgd', 'adam'],
help='Optimizer selection.')
parser.add_argument('--output_dir', type=str, default= 'outputs',
help='output directory')
parser.add_argument('--print_freq', default=10, type=int, help='log print frequency.')
parser.add_argument('--quant_mode', type=str, default= 'layer_wise', choices=['layer_wise', 'kernel_wise'],
help='Quantization mode')
parser.add_argument('--num_calibration_batches', default=100, type=int, help='number of calibration training batches')
parser.add_argument('--enable_warmup', dest='enable_warmup', action='store_true',
help='Enable warm-up learning rate.')
parser.add_argument('--warmup_epochs', default=5, type=int, help='number of epochs for warm-up')
parser.add_argument('--dropout_ratio', default=0.1, type=float, help='dropout ratio for AlexNet.')
args = parser.parse_args()
print ("Script arguments:\n", args)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0
start_epoch = 0
working_dir = os.path.join(args.output_dir, args.train_id)
os.makedirs(working_dir, exist_ok=True)
writer = SummaryWriter(working_dir)
# Setup data.
print('==> Preparing data..')
trainloader, testloader = utils.get_dataloaders(dataset=args.dataset, batch_size=args.batch_size, data_root=args.data_root)
# Setup model
# ----------------------------------------
print('==> Building model..')
if args.dataset == "imagenet":
models = {
'presnet18': PreActResNet18,
'glouncv-alexnet': alexnet,
'glouncv-presnet34': preresnet34,
'glouncv-mobilenetv2_w1': mobilenetv2_w1
}
net = models.get(args.arch, None)()
elif args.dataset == "cifar100":
assert args.arch == "presnet32"
net = preact_resnet32_cifar(num_classes=100)
assert net != None
# Module replacement
# ---------------------------------
if args.train_scheme.startswith("uniq"):
from quantizer.uniq import UniQConv2d, UniQInputConv2d, UniQLinear
if args.bit > 1:
replacement_dict = {
nn.Conv2d : partial(UniQConv2d, bit=args.bit, quant_mode=args.quant_mode),
nn.Linear: partial(UniQLinear, bit=args.bit, quant_mode=args.quant_mode)}
exception_dict = {
'__first__': partial(UniQInputConv2d, bit=8),
'__last__': partial(UniQLinear, bit=8),
}
if args.arch == "glouncv-mobilenetv2_w1":
exception_dict['__last__'] = partial(UniQConv2d, bit=8)
net = utils.replace_module(net, replacement_dict=replacement_dict, exception_dict=exception_dict, arch=args.arch)
else:
# All settings for binary neural networks.
assert args.wd == 0
replacement_dict = {nn.Conv2d : partial(UniQConv2d, bit=1, quant_mode=args.quant_mode),
nn.Linear: partial(UniQLinear, bit=1, quant_mode=args.quant_mode) }
exception_dict = {
'__first__': partial(UniQInputConv2d, bit=32),
'__last__': partial(UniQLinear, bit=32),
'__downsampling__': partial(UniQConv2d, bit=32, quant_mode=args.quant_mode)
}
if args.arch == "glouncv-mobilenetv2_w1":
exception_dict['__last__'] = partial(UniQConv2d, bit=32)
net = utils.replace_module(net, replacement_dict=replacement_dict, exception_dict=exception_dict, arch=args.arch)
# The following part is used for dropout ratio modification.
if args.arch.startswith("glouncv-alexnet"):
net.output.fc1.dropout = nn.Dropout(p=args.dropout_ratio, inplace=False)
net.output.fc2.dropout = nn.Dropout(p=args.dropout_ratio, inplace=False)
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
print (net)
print ("Number of learnable parameters: ", sum(p.numel() for p in net.parameters() if p.requires_grad) / 1e6, "M")
time.sleep(5)
# Loading checkpoint
# -----------------------------
if args.init_from and os.path.isfile(args.init_from):
print('==> Initializing from checkpoint: ', args.init_from)
checkpoint = torch.load(args.init_from)
loaded_params = {}
for k,v in checkpoint['net'].items():
if not k.startswith("module."):
loaded_params["module." + k] = v
else:
loaded_params[k] = v
net_state_dict = net.state_dict()
net_state_dict.update(loaded_params)
net.load_state_dict(net_state_dict)
else:
warnings.warn("No checkpoint file is provided !!!")
params = utils.add_weight_decay(net, weight_decay=args.wd, skip_keys=['delta', 'alpha'])
criterion = nn.CrossEntropyLoss()
# Setup optimizer
# ----------------------------
if args.optimizer == 'sgd':
print ("==> Use SGD optimizer")
optimizer = optim.SGD(params, lr=args.lr,
momentum=0.9, weight_decay=args.wd)
elif args.optimizer == 'adam':
print ("==> Use Adam optimizer")
optimizer = optim.Adam(params, lr=args.lr, weight_decay=args.wd)
# Setup LR scheduler
# ----------------------------
if args.enable_warmup:
lr_scheduler = lr_scheduler.ConstantWarmupScheduler(optimizer=optimizer, min_lr=args.warmup_lr, total_epoch=args.warmup_epochs, after_lr=args.lr,
after_scheduler=optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs - args.warmup_epochs))
else:
lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs )
def train(epoch, ):
global args
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if batch_idx % args.print_freq == 0:
print ("[Train] Epoch=", epoch, " BatchID=", batch_idx, 'Loss: %.3f | Acc: %.3f%% (%d/%d)' \
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
return (train_loss/batch_idx, correct/total)
def test(epoch):
global best_acc, args
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if batch_idx % args.print_freq == 0:
print ("[Test] Epoch=", epoch, " BatchID=", batch_idx, 'Loss: %.3f | Acc: %.3f%% (%d/%d)' \
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
best_acc = acc
utils.save_checkpoint(net, lr_scheduler, optimizer, acc, epoch,
filename=os.path.join(working_dir, 'ckpt_best.pth'))
print('Saving..')
print ('Best accuracy: ', best_acc)
return (test_loss/batch_idx, correct/total)
def simple_initialization(num_batches=100):
net.train()
from quantizer.uniq import STATUS, UniQConv2d, UniQInputConv2d, UniQLinear
for n, m in net.named_modules():
if isinstance(m, UniQConv2d) or isinstance(m, UniQInputConv2d) or isinstance(m, UniQLinear):
assert getattr(m, 'quan_a', None) != None
assert getattr(m, 'quan_w', None) != None
m.quan_a.set_init_state(STATUS.INIT_READY)
m.quan_w.set_init_state(STATUS.INIT_READY)
for batch_idx, (inputs, _) in enumerate(trainloader):
inputs = inputs.to(device)
net(inputs)
if batch_idx + 1 == num_batches: break
for n, m in net.named_modules():
if isinstance(m, UniQConv2d) or isinstance(m, UniQInputConv2d) or isinstance(m, UniQLinear):
assert getattr(m, 'quan_a', None) != None
assert getattr(m, 'quan_w', None) != None
m.quan_a.set_init_state(STATUS.INIT_DONE)
m.quan_w.set_init_state(STATUS.INIT_DONE)
if args.evaluate:
print ("==> Start evaluating ...")
test(-1)
exit()
# Main training
# -----------------------------------------------
# Reset to 'warmup_lr' if we are using warmup strategy.
if args.enable_warmup:
assert args.bit == 1
for param_group in optimizer.param_groups:
param_group['lr'] = args.warmup_lr
# Initialization
# ------------------------------------------------
if args.bit != 32 and args.train_scheme in ["uniq", ]:
simple_initialization(num_batches=args.num_calibration_batches)
# Training
# -----------------------------------------------
for epoch in range(start_epoch, args.epochs):
train_loss, train_acc1 = train(epoch)
test_loss, test_acc1 = test(epoch)
if lr_scheduler is not None:
lr_scheduler.step()
write_metrics(writer, epoch, net, \
optimizer, train_loss, train_acc1, test_loss, test_acc1, prefix="Standard_Training")