-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
379 lines (318 loc) · 13.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#================================================================================================================================
#== 'CliffPhys: Camera-based Respiratory Measurement using Clifford Neural Networks' (Paper ID #11393) ==
#================================================================================================================================
"""
Code containing utility functions for processing respiratory data and videos.
UTILS:
This script provides the following functions:
- sort_nicely: Sorts the list of files in a human-readable way.
- get_vid_stats: Retrieves the duration and FPS of a video.
- get_vid_stats_tensor: Retrieves the FPS of a XYZ video.
- extract_frames_yield: Yields frames from a video file.
- video_preprocessing_testing: Prepares video data for testing/prediction phase.
- get_XYZ_tensor: Extracts XYZ motion tensors from a video.
- filter_RW: Applies band-pass filtering to a signal (cutoffs frequencies 0.1 Hz, 0.5 Hz).
- sliding_straded_win_idx: Computes indices for overlapping or non-overlapping windows.
- sig_windowing: Performs signal windowing.
- tensor_gt_windowing: Slices a XYZ tensor and its ground truth into windows.
- Welch_rpm: Computes the Welch periodogram of a respiratory signal.
- sig_to_RPM: Converts a signal to respiratory rate in RPM.
- print_signal_psd: Prints the Power Spectral Density of a signal.
The get_XYZ_tensor employs the MiDaS family of models, specifically the DPT-Large model with SwinV2
encoder backbon to perform the Monocular Depth Estimation phase
The get_XYZ_tensor employs the Raft-Small model, to compute the Optical Flow x-axis and y-axis projections.
"""
from __future__ import division
import torch
import numpy as np
from scipy import signal
from matplotlib import pyplot as plt
from tqdm import tqdm
from PIL import Image
import cv2 as cv
import re
import os
import warnings
import importlib
warnings.filterwarnings("ignore")
def sort_nicely(l):
""" Sort the given list in the way that humans expect.
"""
convert = lambda text: int(text) if text.isdigit() else text
alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ]
l.sort( key=alphanum_key )
return l
def get_vid_stats(videoFileName):
"""
Retrieves the duration and FPS of a video.
"""
cap = cv.VideoCapture(videoFileName)
fps = cap.get(cv.CAP_PROP_FPS) # OpenCV v2.x used "CV_CAP_PROP_FPS"
frame_count = int(cap.get(cv.CAP_PROP_FRAME_COUNT))
duration = frame_count/fps
return duration, int(fps)
def get_vid_stats_tensor(videoFileName):
"""
Retrieves the FPS of a XYZ video.
"""
fps = np.load(os.path.join(videoFileName, 'fps.npy'))
return None, int(fps)
def extract_frames_yield(videoFileName):
"""
This method yield the frames of a video file name or path.
"""
vidcap = cv.VideoCapture(videoFileName)
success, image = vidcap.read()
while success:
yield image
success, image = vidcap.read()
vidcap.release()
def video_preprocessing_testing(data, F):
"""
Prepares video data for testing/prediction phase.
"""
data = data[np.newaxis, :F, ...]
return data
def get_XYZ_tensor(video_path, fps, extraction_OF, extraction_depth, paths, gt=None, fs_gt=None):
"""
Extracts XYZ motion tensors from a video. This methods employs the MiDaS family of models,
specifically the DPT-Large model with SwinV2 encoder backbon to perform the Monocular Depth Estimation phase.
It also uses the Raft-Small method to compute the vertical and horizontal Optical Flow components.
"""
ptlflow = importlib.import_module('ptlflow')
#from ptlflow import models_dict
print("\nExtracting XYZ motion tensor...")
#_, fps = get_vid_stats(video_path)
frames_X = []
frames_Y = []
frames_Z = []
if extraction_depth == 'midas':
#from depth.depth_midas import DepthSignalProcessing
depth_midas = importlib.import_module('depth.depth_midas')
model_type="dpt_swin2_large_384"
depth_extractor = depth_midas.DepthSignalProcessing(model_type=model_type)
if extraction_OF in ptlflow.models_dict:
#import ptlflow
#from ptlflow.utils import flow_utils
#from ptlflow.utils.io_adapter import IOAdapter
model_of = extraction_OF
ckpt = 'things'
batch_size = 64
cuda=True
if not cuda:
torch.cuda.is_available = lambda : False
device = 'cpu'
else:
device = torch.device("cuda")
OFmodel = ptlflow.get_model(model_of, pretrained_ckpt=ckpt)
OFmodel.to(device)
elif extraction_OF == 'OF_model':
#from motion.motion import OF
motion = importlib.import_module('motion.motion')
model_of = motion.OF
frames_PIL = [Image.fromarray(cv.cvtColor(frame, cv.COLOR_BGR2RGB)) for frame in extract_frames_yield(video_path)]
newsize = (256, 256)
frames_PIL_res = [frame.resize(newsize) for frame in frames_PIL]
frames_res = [np.array(frame) for frame in frames_PIL_res]
nframes = len(frames_res)
print("\n> Computing Optical Flow...")
exceeding = None
while True:
try:
print("\n> Attempting with batch size: " + str(batch_size))
for i in tqdm(range(0, nframes, batch_size)):
if i == 0:
start = i
else:
start = i-1
end = min(i+batch_size, nframes)
batch = frames_res[start:end]
if len(batch) <= 2:
exceeding = len(batch)
batch = frames_res[start-len(batch):end]
if i == 0:
io_adapter = ptlflow.utils.io_adapter.IOAdapter(OFmodel, batch[0].shape[:2], cuda=cuda)
inputs = io_adapter.prepare_inputs(batch)
input_images = inputs["images"][0]
video1 = input_images[:-1]
video2 = input_images[1:]
input_images = torch.stack((video1, video2), dim=1)
if cuda:
input_images = input_images.cuda()
inputs["images"] = input_images
predictions = OFmodel(inputs)
predictions = io_adapter.unpad_and_unscale(predictions)
flows_horiz = torch.squeeze(predictions['flows'])[:,0,:,:].cpu().detach().numpy()
flows_vert = torch.squeeze(predictions['flows'])[:,1,:,:].cpu().detach().numpy()
if exceeding is not None :
flows_horiz = flows_horiz[exceeding:]
flows_vert = flows_vert[exceeding:]
exceeding == None
frames_X.append(flows_horiz)
frames_Y.append(flows_vert)
break
except RuntimeError:
batch_size = batch_size // 2
frames_X = []
frames_Y = []
if batch_size < 4:
raise ValueError("Batch size is too tiny, maybe need more GPU memory.")
del OFmodel
torch.cuda.empty_cache()
print("\n> Computing Depth estimate...")
for i, frame in tqdm(enumerate(frames_PIL_res)):
depth_extractor.extract_depth(frame)
frames_Z.append(depth_extractor.get_frame_depth())
depth_extractor.set_frame_depth(None)
if extraction_depth == 'midas':
depth_extractor.set_first_execution(True)
print("\n> Creating XYZ tensor...")
frames_XX = [cv.cvtColor(frame, cv.COLOR_RGB2GRAY) if len(frame.shape) == 3 else frame for frame in np.concatenate(frames_X)]
frames_YY = [cv.cvtColor(frame, cv.COLOR_RGB2GRAY) if len(frame.shape) == 3 else frame for frame in np.concatenate(frames_Y)]
frames_ZZ = [cv.cvtColor(np.array(frame), cv.COLOR_RGB2GRAY) if len(np.array(frame).shape) == 3 else np.array(frame) for frame in frames_Z[:-1]]
frames_res = np.array(frames_res[:-1])
# Channels: 0 : R, 1 : G, 2 : B, 3 : X, 4 : Y, 5 : Z
frames_tensor = np.stack([np.array(frames_res)[..., 0], np.array(frames_res)[..., 1],
np.array(frames_res)[..., 2], np.array(frames_XX), np.array(frames_YY),
np.array(frames_ZZ)], axis=-1)
np.save(paths['XYZ']+'/RGB_XYZ_tensor', frames_tensor)
np.save(paths['XYZ']+'/fps', fps)
if gt is not None and fs_gt is not None:
np.save(paths['gt']+'/gt', gt)
np.save(paths['gt']+'/fs_gt', fs_gt)
def filter_RW(sig, fps, lo=0.1, hi=0.5):
"""
This method performs posptprocessing steps of fiedler methods; the postprocessing process performs on the signal a normalization, computes the gradient of the signal and applies a band-pass filter
Parameters
----------
sig: the considered signal
fps : the fps of the considered video
Returns
-------
the postprocessed signal
"""
#sig = np.diff(np.asarray(sig), axis=0)
#sig = np.squeeze(sig)
if (sig.ndim == 1):
sig = sig[np.newaxis,:]
b, a = signal.butter(N=2, Wn=[lo, hi], fs=fps, btype='bandpass')
filtered_sig = signal.filtfilt(b, a, sig)
return filtered_sig
def sliding_straded_win_idx(N, wsize, stride, fps):
"""
This method is used to compute the indices for creating an overlapping windows signal.
Args:
N (int): length of the signal.
wsize (float): window size in seconds.
stride (float): stride between overlapping windows in seconds.
fps (float): frames per seconds.
Returns:
List of ranges, each one contains the indices of a window, and a 1D ndarray of times in seconds, where each one is the center of a window.
"""
wsize_fr = wsize*fps
stride_fr = stride*fps
idx = []
timesES = []
num_win = int((N-wsize_fr)/stride_fr)+1
s = 0
for i in range(num_win):
idx.append(np.arange(s, s+wsize_fr))
s += stride_fr
timesES.append(wsize/2+stride*i)
return idx, np.array(timesES, dtype=np.float32)
def sig_windowing(sig, fps, wsize, stride=1):
""" Performs signal windowing
Args:
sig (list/array): full signal
fps (float): frames per seconds
wsize (float): size of the window (in seconds)
stride (float): stride (in seconds)
Returns:
win_sig (list): windowed signal
timesES (list): times of (centers) windows
"""
sig = np.array(sig).squeeze()
block_idx, timesES = sliding_straded_win_idx(sig.shape[0], wsize, stride, fps)
sig_win = []
for e in block_idx:
st_frame = int(e[0])
end_frame = int(e[-1])
wind_signal = np.copy(sig[st_frame: end_frame+1])
sig_win.append(wind_signal[np.newaxis, :])
return sig_win, timesES
def tensor_windowing(tensor, window_size):
windows_tensor = []
num_windows = tensor.shape[0] // window_size
for i in range(num_windows):
start_index = i * window_size
end_index = start_index + window_size
window_tensor = tensor[start_index:end_index, :, :, :]
windows_tensor.append(window_tensor)
return windows_tensor
def Welch_rpm(resp, fps, winsize, fRes=0.1):
"""
This method computes the spectrum of a respiratory signal
Parameters
----------
resp: the respiratory signal
fps: the fps of the video from which signal is estimated
winsize: the window size used to compute spectrum
minHz: the lower bound for accepted frequencies
maxHz: the upper bound for accepted frequencies
Returns
-------
the array of frequencies and the corrisponding PSD
"""
step = 1
nperseg=fps*winsize
noverlap=fps*(winsize-step)
nyquistF = fps/2
nfft = max(2048, (60*2*nyquistF) / fRes)
# -- periodogram by Welch
F, P = signal.welch(resp, nperseg=nperseg, noverlap=noverlap, fs=fps, nfft=nfft)
F = F.astype(np.float32)
P = P.astype(np.float32)
Pfreqs = F*60
Power = P
return Pfreqs, Power
def sig_to_RPM(sig, fps, winsize):
sig = np.vstack(sig)
Pfreqs, Power = Welch_rpm(sig, fps, winsize)
Pmax = np.argmax(Power, axis=1) # power max
rpm = Pfreqs[Pmax.squeeze()]
if (rpm.size == 1):
return rpm.reshape(1, -1)
return rpm
def print_signal_psd(name, sig, gt, winsize, fps, results_dir):
figs_path = './'+results_dir+'/Figs/'
if not os.path.exists(figs_path):
os.makedirs(figs_path)
sig = (sig[0, :] - np.mean(sig[0, :]))/np.std(sig[0, :])
gt = (gt[0, :] - np.mean(gt[0, :]))/np.std(gt[0, :])
gt = signal.resample(gt, sig.shape[0])
gt = gt[np.newaxis,:]
sig = sig[np.newaxis,:]
Pfreqs_gt, Power_gt = Welch_rpm(gt, fps, winsize)
Pfreqs_sig, Power_sig = Welch_rpm(sig, fps, winsize)
import seaborn as sns
sns.set_context('poster')
fig, axs = plt.subplots(2, 1, figsize=(10, 8), sharex=True)
time_x = np.linspace(0, gt.shape[1]/fps, gt.shape[1])
axs[0].plot(time_x, sig[0, :], label='Filtered Prediction')
axs[0].set_ylabel('Amplitude')
axs[0].set_title('Prediction filtered [0.1, 0.5] Hz')
axs[1].plot(time_x, gt[0, :])
axs[1].set_ylabel('Amplitude')
axs[1].set_title('Ground Truth')
axs[1].set_xlabel('Time (s)')
plt.tight_layout()
plt.savefig(figs_path + "signals_sbj_" + name + ".pdf", bbox_inches='tight', pad_inches=0, format='pdf')
plt.figure(figsize=(10, 6))
plt.plot(Pfreqs_gt[0:1200], Power_gt[0, 0:1200], label='Ground Truth')
plt.plot(Pfreqs_sig[0:1200], Power_sig[0, 0:1200], label='Prediction')
plt.legend()
plt.title('Welch Periodogram ')
plt.xlabel('RPM')
plt.ylabel('Power Spectral Density')
plt.tight_layout()
plt.savefig(figs_path + "psd_sbj_" + name + ".pdf", bbox_inches='tight', pad_inches=0, format='pdf')