-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathc01_plot_agu1.py
126 lines (94 loc) · 3.96 KB
/
c01_plot_agu1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import subprocess
import datetime
from cffdrs import arcticfire
from uafgi import cptutil
# https://stackoverflow.com/questions/43599018/is-there-a-way-to-get-matplotlib-path-contains-points-to-be-inclusive-of-boundar
#I do quite like this command in Jupiter notebook:
#from IPython.core.display import display, HTML
#display(HTML("<style>.container { width:95% !important; }</style>"))
#It makes things wider and not waste the space on your screen
import pandas as pd
import importlib
import csv,os
import numpy as np
import pandas as pd
import itertools
import pyproj
import shapely
import copy
from uafgi import gicollections,cfutil,glacier,gdalutil,shputil,pdutil,cartopyutil
import uafgi.data
import uafgi.data.ns642
import netCDF4
import matplotlib.pyplot as plt
import uafgi.data.wkt
import uafgi.data.w21 as d_w21
from mpl_toolkits.axes_grid1 import make_axes_locatable
itslive_file = 'outputs/itslive/GRE_G0240_W70.90N_1985_2018.nc'
sigma_file = 'outputs/itslive/GRE_G0240_W70.90N_1985_2018_sigma.nc'
bm_file = 'outputs/bedmachine/BedMachineGreenland-2017-09-20_W70.90N.nc'
termini_file = 'data/wood2021/Greenland_Glacier_Ice_Front_Positions.shp'
def main():
# Convert geotransform to extents
# TODO: Add to cartopyutil
#def geotransform_to_extents(gt):
# x0 = gt[0]
# x1 =
# Get projection, etc. and data too
with netCDF4.Dataset(itslive_file) as nc:
map_crs,extents = cartopyutil.nc_mapinfo(nc, 'polar_stereographic')
map_wkt = nc.variables['polar_stereographic'].spatial_ref
xx = nc.variables['x'][:]
yy = nc.variables['y'][:]
# Data
uu = nc.variables['u_ssa_bc'][-1,:]
vv = nc.variables['v_ssa_bc'][-1,:]
df = shputil.read_df(termini_file, wkt=map_wkt)
print(df.columns)
df = df[df.Glacier.isin(['Kangilleq', 'Sermeq Silarleq']) & (df.Year == 2018)]
termini = df['loc'].tolist()
with netCDF4.Dataset(bm_file) as nc:
bed = nc.variables['bed'][:]
with netCDF4.Dataset(sigma_file) as nc:
sigma = nc.variables['sigma'][-1,:]
# ---------------------------------------------------
# Shrink the domain
extents[2] = extents[3] + .5*(extents[2]-extents[3])
# -----------------------------------------------------
fig,axs = plt.subplots(
nrows=1,ncols=1,
subplot_kw={'projection': map_crs},
figsize=(8.5,5.5))
# Get sub-plot to plot on
#ax = axs[0][0]
ax = axs
ax.set_title('Integration of velocity (v) or stress state (vσ) across terminus')
ax.set_extent(extents, map_crs)
cmap,_,_ = cptutil.read_cpt('palettes/caribbean.cpt')
ax.pcolormesh(
xx, yy, bed, transform=map_crs, cmap=cmap)
ax.quiver(xx, yy, uu, vv, transform=map_crs, regrid_shape=30, scale=30000)
# this plots the polygon
# must declare correct coordinate system of the data
# here, coordinates in `pgon` are LambertConformal,
# it must be specified here as `crs=ccrs.LambertConformal()`
ax.add_geometries(termini, crs=map_crs, facecolor="none", edgecolor='red', alpha=0.8)
fig.savefig('agu1b.png', dpi=300, transparent=True)
# -----------------------------------------------------
fig,axs = plt.subplots(
nrows=1,ncols=1,
subplot_kw={'projection': map_crs},
figsize=(8.5,5.5))
ax = axs
ax.set_title('Stress state σ of glacier (MPa)')
ax.set_extent(extents, map_crs)
pcm = ax.pcolormesh(xx, yy, 1.e-6 * sigma, transform=map_crs, vmin=0.0, vmax=0.5)
divider = make_axes_locatable(ax)
# https://stackoverflow.com/questions/30030328/correct-placement-of-colorbar-relative-to-geo-axes-cartopy
# cax = divider.append_axes("bottom", size='3%', pad=0.05, axes_class=plt.Axes)
cbar = fig.colorbar(pcm, ax=ax, shrink=0.98)
# cbar.set_label('Stress State σ (MPa)')
ax.add_geometries(termini, crs=map_crs, facecolor="none", edgecolor='red', alpha=0.8)
#plt.show()
fig.savefig(uafgi.data.join_plots('agu1a.png'), dpi=300, transparent=True)
main()