-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtree_model.py
188 lines (164 loc) · 7.59 KB
/
tree_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import tensorflow as tf
from tensorflow.keras import Model, layers
from losses import chamfer_loss
class TreeDecoder(Model):
def __init__(self, K, upsample, last_layer, batch_size, depth, curr_node, degree, in_feat, out_feat):
super(TreeDecoder, self).__init__()
self.in_feat = in_feat
self.out_feat = out_feat
self.curr_node = curr_node
self.degree = degree
self.depth = depth
self.batch_size = batch_size
self.last_layer = last_layer
self.upsample = upsample
self.F_K = [layers.Dense(units=K*self.in_feat), layers.Dense(units=self.out_feat)] # Loop Term
self.U = [layers.Dense(units=self.out_feat) for i in range(self.depth+1)] # Accumulate information from Ancestor
self.W_up = tf.Variable(tf.initializers.GlorotUniform()(shape=[self.curr_node, self.in_feat, self.degree*self.in_feat]), name='WeightMat') # Xavier Initalization
if not self.last_layer:
self.act = layers.LeakyReLU(alpha=0.2)
self.b = tf.Variable(tf.initializers.GlorotUniform()(shape=[1, self.degree*self.curr_node, self.out_feat]), name='Bias') # Xavier Initalization, for next level
def call(self, tree):
Anc_info = 0
# Gathering information from ancestor
for depth in range(self.depth+1):
anc_node = tree[depth].shape[1]
rep_node = self.curr_node // anc_node
Q = self.U[depth](tree[depth])
Anc_info = Anc_info + tf.reshape(tf.tile(Q, [1, 1, rep_node]), [-1, self.curr_node, self.out_feat])
# Upsampling the nodes
if self.upsample:
next_level = tf.expand_dims(tree[-1], axis=2) @ self.W_up
next_level = tf.reshape(next_level, [-1, self.curr_node * self.degree, self.in_feat])
next_level = self.F_K[1]( self.F_K[0]( next_level ) )
next_level = next_level + tf.reshape(tf.tile(Anc_info, [1, 1, self.degree]), [-1, self.curr_node*self.degree, self.out_feat])
else:
next_level = self.F_K[1]( self.F_K[0]( tree[-1] ) )
next_level = next_level + Anc_info
# Adding bias and passing through non linearity function
if not self.last_layer:
next_level = self.act(next_level + self.b)
tree.append(next_level)
return tree
class TreeEncoder(Model):
def __init__(self, K, downsample, last_layer, batch_size, depth, curr_node, in_feat, out_feat):
super(TreeEncoder, self).__init__()
self.in_feat = in_feat
self.out_feat = out_feat
self.curr_node = curr_node
self.depth = depth
self.batch_size = batch_size
self.last_layer = last_layer
self.downsample = downsample
self.F_K = [layers.Dense(units=K*self.in_feat), layers.Dense(units=self.out_feat)] # Loop Term
self.U = [layers.Dense(units=self.out_feat) for i in range(self.depth+1)] # Accumulate information from Ancestor
self.W_down = tf.Variable(tf.initializers.GlorotUniform()(shape=[self.curr_node, self.in_feat, self.in_feat]), name='WeightMat') # Xavier Initalization
if not self.last_layer:
self.act = layers.LeakyReLU(alpha=0.2)
self.b = tf.Variable(tf.initializers.GlorotUniform()(shape=[1, self.out_feat]), name='Bias') # Xavier Initalization, for next level
def call(self, tree):
Anc_info = None
# Gathering information from ancestor
for depth in range(self.depth+1):
anc_node = tree[depth].shape[1]
red_node = anc_node // self.curr_node # reduce node
Q = self.U[depth](tree[depth])
gath_feat = None
start_idx = 0
group_size = anc_node // red_node # Total number of item in one group
stop_idx = group_size
for _ in range(red_node):
#gath_feat = gath_feat + Q[:, start_idx:stop_idx]
if gath_feat is not None:
gath_feat = tf.maximum(gath_feat, Q[:, start_idx:stop_idx])
else:
gath_feat = Q[:, start_idx:stop_idx]
start_idx = stop_idx
stop_idx = stop_idx + group_size
if Anc_info is not None:
Anc_info = tf.maximum(Anc_info, gath_feat)
else:
Anc_info = gath_feat
# Downsampling the nodes
if self.downsample>0:
N = self.curr_node
next_level = tf.expand_dims(tree[-1], axis=2) @ self.W_down
next_level = tf.reshape(next_level, [-1, N, self.in_feat])
if self.downsample == 2:
upper_half, lower_half = next_level[:, :N//2], next_level[:, (N//2):]
#next_level = upper_half + lower_half
next_level = tf.maximum(upper_half, lower_half)
else:
#next_level = tf.reduce_sum(next_level, axis=1, keepdims=True)
next_level = tf.reduce_max(next_level, axis=1, keepdims=True)
next_level = self.F_K[1]( self.F_K[0]( next_level ) )
# next_level = next_level + tf.reshape(tf.tile(Anc_info, [1, 1, self.degree]), [-1, self.curr_node*self.degree, self.out_feat])
# else:
# next_level = self.F_K[1]( self.F_K[0]( tree[-1] ) )
red_node = Anc_info.shape[1] // next_level.shape[1] # Total number groups
gath_feat = None
start_idx = 0
group_size = Anc_info.shape[1] // red_node # Total number of item in one group
stop_idx = group_size
for _ in range(red_node):
#gath_feat = gath_feat + Anc_info[:, start_idx:stop_idx]
if gath_feat is not None:
gath_feat = tf.maximum(gath_feat, Anc_info[:, start_idx:stop_idx])
else:
gath_feat = Anc_info[:, start_idx:stop_idx]
start_idx = stop_idx
stop_idx = stop_idx + group_size
next_level = tf.maximum(next_level, gath_feat)
# Adding bias and passing through non linearity function
if not self.last_layer:
next_level = self.act(next_level + self.b)
tree.append(next_level)
return tree
class TreeED(Model):
def __init__(self, N=2048, K=10, latent_dim=512, batch_size=16):
super(TreeED, self).__init__()
filters_enc = [3, 32, 64, 128, 128, 256, latent_dim]
downsample_enc = [2, 2, 2, 2, 2, (N*64)//2048]
self.depth_enc = len(filters_enc) - 1
self.tree_layer_enc = []
curr_nodes_enc = N
for layer_no in range(self.depth_enc):
if layer_no == self.depth_enc-1:
self.tree_layer_enc.append(TreeEncoder(K, downsample_enc[layer_no], True, batch_size, layer_no, curr_nodes_enc, filters_enc[layer_no], filters_enc[layer_no+1]))
else:
self.tree_layer_enc.append(TreeEncoder(K, downsample_enc[layer_no], False, batch_size, layer_no, curr_nodes_enc, filters_enc[layer_no], filters_enc[layer_no+1]))
curr_nodes_enc = curr_nodes_enc // downsample_enc[layer_no]
filters_dec = [latent_dim, 512, 256, 256, 128, 128, 128, 3]
degrees_dec = [ 1, 2, 2, 2, 2, 2, (N*64)//2048]
self.depth_dec = len(filters_dec) - 1
self.tree_layer_dec = []
curr_nodes_dec = 1
for layer_no in range(self.depth_dec):
if layer_no == self.depth_dec-1:
self.tree_layer_dec.append(TreeDecoder(K, True, True, batch_size, layer_no, curr_nodes_dec, degrees_dec[layer_no], filters_dec[layer_no], filters_dec[layer_no+1]))
else:
self.tree_layer_dec.append(TreeDecoder(K, True, False, batch_size, layer_no, curr_nodes_dec, degrees_dec[layer_no], filters_dec[layer_no], filters_dec[layer_no+1]))
curr_nodes_dec = curr_nodes_dec * degrees_dec[layer_no]
def call(self, tree):
for layer_no in range(self.depth_enc):
tree = self.tree_layer_enc[layer_no]( tree )
enc_tree = tree[-1]
enc_tree = tf.reshape(enc_tree, [enc_tree.shape[0], -1])
tree = [tree[-1]]
for layer_no in range(self.depth_dec):
tree = self.tree_layer_dec[layer_no]( tree )
return enc_tree, tree[-1]
def train_step(treeED, opt, X, Y, N):
with tf.GradientTape() as tape:
X = [X]
_, Y_cap = treeED(X, training=True)
loss = chamfer_loss(Y, Y_cap, N)
variables = treeED.trainable_variables
gradients = tape.gradient(loss, variables)
opt.apply_gradients(zip(gradients, variables))
return loss
def test_step(treeED, X, Y, N):
X = [X]
_, Y_cap = treeED(X, training=False)
loss = chamfer_loss(Y, Y_cap, N)
return loss