-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
156 lines (134 loc) · 5.16 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
from scipy.io import wavfile
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten, LSTM
from tensorflow.keras.layers import Dropout, Dense, TimeDistributed
from tensorflow.keras.models import Sequential
from tensorflow.keras.utils import to_categorical
from sklearn.utils.class_weight import compute_class_weight
from tqdm import tqdm
from python_speech_features import mfcc
plt.style.use('seaborn-pastel')
from cfg import Config
from tensorflow.keras.callbacks import ModelCheckpoint
import pickle
def check_data():
if os.path.isfile(config.p_path):
print('Loading existing data for {} model'.format(config.mode))
with open(config.p_path, 'rb') as handle:
tmp = pickle.load(handle)
return tmp
else:
return None
def build_rand_feat():
tmp = check_data()
if tmp:
return tmp.data[0], tmp.data[1]
X = []
y = []
_min, _max = float('inf'), -float('inf')
for _ in tqdm(range(n_samples)):
rand_class = np.random.choice(class_dist.index, p=prob_dist)
file = np.random.choice(df[df.label == rand_class].index)
rate, wav = wavfile.read('wavfiles/'+file)
label = df.at[file, 'label']
rand_index = np.random.randint(0, wav.shape[0] - config.step)
sample = wav[rand_index:rand_index+config.step]
X_sample = mfcc(sample, rate, numcep=config.nfeat,
nfilt=config.nfilt, nfft=config.nfft)
_min = min(np.amin(X_sample), _min)
_max = max(np.amax(X_sample), _max)
X.append(X_sample)
y.append(classes.index(label))
config.min = _min
config.max = _max
X = np.array(X)
y = np.array(y)
X = (X - _min) / (_max - _min)
if config.mode == 'conv':
X.reshape(X.shape[0], X.shape[1], X.shape[2], 1)
elif config.mode == 'rec':
X.reshape(X.shape[0], X.shape[1], X.shape[2])
y = to_categorical(y ,num_classes=8) # Change
config.data = (X, y)
with open(config.p_path, 'wb') as handle:
pickle.dump(config, handle, protocol=2)
return X, y
def get_conv_model():
model = Sequential()
model.add(Conv2D(16, (3, 3), activation='relu', strides=(1, 1),
padding='same', input_shape=input_shape))
model.add(Conv2D(32, (3, 3), activation='relu', strides=(1,1),
padding='same'))
model.add(Conv2D(64, (3, 3), activation='relu', strides=(1,1),
padding='same'))
model.add(Conv2D(128, (3, 3), activation='relu', strides=(1,1),
padding='same'))
model.add(MaxPool2D(2, 2))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(8, activation='softmax')) # Change
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['acc'])
return model
def get_recurrent_model():
model = Sequential()
model.add(LSTM(128, return_sequences=True, input_shape=input_shape))
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(0.5))
model.add(TimeDistributed(Dense(64, activation='relu')))
model.add(TimeDistributed(Dense(32, activation='relu')))
model.add(TimeDistributed(Dense(16, activation='relu')))
model.add(TimeDistributed(Dense(8, activation='relu')))
model.add(Flatten())
model.add(Dense(8, activation='softmax')) # Change
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['acc'])
return model
df = pd.read_csv('test.csv')
df.set_index('fname', inplace=True)
for f in df.index:
rate, signal = wavfile.read('wavfiles/'+f)
df.at[f, 'length'] = signal.shape[0]/rate
classes = list(np.unique(df.label))
class_dist = df.groupby(['label'])['length'].mean()
n_samples = 2 * int(df['length'].sum()/0.1)
prob_dist = class_dist / class_dist.sum()
choices = np.random.choice(class_dist.index, p=prob_dist)
fig, ax = plt.subplots()
ax.set_title('Class Distribution', y=1.08)
ax.pie(class_dist, labels=class_dist.index, autopct='%1.1f%%',
shadow=False, startangle=90)
ax.axis('equal')
plt.show()
config = Config(mode='conv')
if config.mode == 'conv':
X, y = build_rand_feat()
X = np.expand_dims(X, axis=3)
y_flat = np.argmax(y, axis=1)
input_shape = (X.shape[1], X.shape[2], 1)
model = get_conv_model()
elif config.mode == 'rec':
X, y = build_rand_feat()
y_flat = np.argmax(y, axis=1)
input_shape = (X.shape[1], X.shape[2])
model = get_recurrent_model()
l = np.unique(y_flat)
class_weight = compute_class_weight('balanced',
l,
y_flat)
checkpoint = ModelCheckpoint(config.model_path, monitor='val_acc',
verbose=1, mode='max', save_best_only=True,
save_weights_only=False, period=1)
model.fit(X, y, epochs=5, batch_size=32, shuffle=True,
class_weight=class_weight,
validation_split=0.1, callbacks=[checkpoint])
model.save(config.model_path)