-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmyCNN.py
39 lines (28 loc) · 902 Bytes
/
myCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import keras
from keras.layers import Activation, Dense, Dropout, Flatten, \
Conv2D, MaxPool2D
from keras.models import Sequential
import numpy as np
import librosa
import random
model = Sequential()
input_shape = (128, 128, 1)
model.add(Conv2D(24, (5, 5), strides=(1, 1), input_shape=input_shape))
model.add(MaxPool2D((4, 2), strides=(4, 2)))
model.add(Activation('relu'))
model.add(Conv2D(48, (5, 5), padding="valid"))
model.add(MaxPool2D((4, 2), strides=(4, 2)))
model.add(Activation('relu'))
model.add(Conv2D(48, (5, 5), padding="valid"))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dropout(rate=0.5))
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(rate=0.5))
model.add(Dense(10))
model.add(Activation('softmax'))
model.compile(optimizer="Adam",
loss="categorical_crossentropy",
metrics=['accuracy']
)