-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfaces_train.py
42 lines (36 loc) · 1.33 KB
/
faces_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os
import cv2
import numpy as np
import pickle
from PIL import Image
BASE_DIR=os.path.dirname(os.path.abspath(__file__))
image_dir=os.path.join(BASE_DIR,"images")
recognizer = cv2.face.LBPHFaceRecognizer_create()
face_cascade=cv2.CascadeClassifier("cascades/data/haarcascade_frontalface_default.xml")
current_id=0
label_ids={}
y_labels=[]
x_train=[]
for root, dirs, files in os.walk(image_dir):
for file in files:
if file.endswith("png") or file.endswith("jpg"):
path=os.path.join(root,file)
label=os.path.basename(os.path.dirname(path))
print(label,path)
if not label in label_ids:
label_ids[label]=current_id
current_id+=1
id_=label_ids[label]
print(label_ids)
pil_image=Image.open(path).convert("L")
image_array=np.array(pil_image,"uint8")
print(image_array)
faces=face_cascade.detectMultiScale(image_array,minNeighbors=5)
for (x,y,w,h) in faces:
roi=image_array[y:y+h,x:x+w]
x_train.append(roi)
y_labels.append(id_)
with open("labels.pickle","wb") as f:
pickle.dump(label_ids, f)
recognizer.train(x_train, np.array(y_labels))
recognizer.save("trainner.yml")