-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paths_t1wSim.m
42 lines (31 loc) · 1.19 KB
/
s_t1wSim.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
%% Qiyuan Tian 2022
clear, clc, close all
dpRoot = fileparts(which('s_t1wSim.m'));
dpData = fullfile(dpRoot, 'data');
dpSim = fullfile(dpRoot, 'data-sim');
mkdir(dpSim);
%% file pre
files = dir(fullfile(dpData, 'hcp*'))';
%% add noise
for ii = 1 : length(files)
fnFile = files(ii).name;
fpFile = fullfile(dpData, fnFile);
tmp = load(fpFile);
t1w = tmp.t1w;
mask = tmp.mask; % find area of interesting
maskdil = tmp.mask_dilate;
%%% simulate low snr data
t1wnorm = (t1w - mean(t1w(mask))) / std(t1w(mask)); % standardize image intensity to [-3 3]
pd = makedist('Normal', 'mu', 0, 'sigma', 0.4); % add gaussian noise, 0 mean, 0.4 std dev
noisesim = random(pd, size(t1w));
t1wnorm_lowsnr = t1wnorm + noisesim;
t1w_lowsnr = t1wnorm_lowsnr * std(t1w(mask)) + mean(t1w(mask));
t1w_lowsnr = t1w_lowsnr .* maskdil;
figure, imshow(t1w(:, :, 100), [0, 1200]);
figure, imshow(t1w_lowsnr(:, :, 100), [0, 1200]);
figure, imshow(t1w(:, :, 100) - t1w_lowsnr(:, :, 100), [-500, 500]);
%%% save data
fnSave = [fnFile(1 : end - 4) '_sim.mat'];
fpSave = fullfile(dpSim, fnSave);
save(fpSave, 't1w_lowsnr');
end