-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTest2.py
89 lines (72 loc) · 3.11 KB
/
Test2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import cv2
import numpy as np
# Define the paths to the model files
weights_file_abs_path = r"C:/Users/DELL/Desktop/RealTimeDataProcessing/yolov3.weights"
config_file_abs_path = r"C:/Users/DELL/Desktop/RealTimeDataProcessing/yolov3.cfg"
names_file_abs_path = r"C:/Users/DELL/Desktop/RealTimeDataProcessing/coco.names"
# Load YOLO
net = cv2.dnn.readNet(weights_file_abs_path, config_file_abs_path)
layer_names = net.getLayerNames()
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers().flatten()]
# Load class names
with open(names_file_abs_path, 'r') as f:
classes = [line.strip() for line in f.readlines()]
# URL of the video stream
URL = "http://192.168.1.53:80/stream"
# Open the video stream
cap = cv2.VideoCapture(URL)
# Check if the video stream was opened successfully
if not cap.isOpened():
print(f"Error: Unable to open video stream at {URL}")
else:
while True:
# Read a frame from the video stream
ret, frame = cap.read()
# Check if the frame was read successfully
if not ret:
print("Error: Unable to read frame from video stream")
break
# Get the height, width, and channels of the frame
height, width, channels = frame.shape
# Detecting objects
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# Showing information on the screen
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
confidence = confidences[i]
color = (0, 255, 0)
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# Display the output image
cv2.imshow('Object Detection', frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release the video capture object and close all OpenCV windows
cap.release()
cv2.destroyAllWindows()