-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathYOLOCameraMotors.py
154 lines (126 loc) · 5.04 KB
/
YOLOCameraMotors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import cv2
import numpy as np
import socket
import threading
import time
# Define the paths to the model files
weights_file_abs_path = r"C:/Users/DELL/Desktop/RealTimeDataProcessing/yolov3.weights"
config_file_abs_path = r"C:/Users/DELL/Desktop/RealTimeDataProcessing/yolov3.cfg"
names_file_abs_path = r"C:/Users/DELL/Desktop/RealTimeDataProcessing/coco.names"
# Load YOLO
net = cv2.dnn.readNet(weights_file_abs_path, config_file_abs_path)
# Uncomment the following lines if you have a compatible GPU
# net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
# net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
layer_names = net.getLayerNames()
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers().flatten()]
# Load class names
with open(names_file_abs_path, 'r') as f:
classes = [line.strip() for line in f.readlines()]
# URL of the video stream
URL = "http://192.168.1.88/stream"
# Open the video stream
cap = cv2.VideoCapture(URL)
# Check if the video stream was opened successfully
if not cap.isOpened():
print(f"Error: Unable to open video stream at {URL}")
exit()
# Replace with your ESP32's IP address and port
esp32_ip = "192.168.1.88"
esp32_port = 8080
# Create a socket object
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# Connect to the ESP32 WiFi server
try:
client_socket.connect((esp32_ip, esp32_port))
client_socket.settimeout(5.0) # Increase the timeout for socket operations
except socket.error as e:
print(f"Socket error: {e}")
exit()
# Shared frame buffer
frame_buffer = None
frame_lock = threading.Lock()
def send_command(command):
try:
print(f"Sending command: {command}")
client_socket.send(command.encode())
# Receive response from ESP32 (if any)
response = client_socket.recv(1024)
print("Response from ESP32:", response.decode())
except socket.timeout:
print("Warning: Socket operation timed out")
except socket.error as e:
print(f"Socket error: {e}")
def capture_frames():
global frame_buffer
while True:
ret, frame = cap.read()
if not ret:
print("Error: Unable to read frame from video stream")
break
with frame_lock:
frame_buffer = frame.copy()
time.sleep(0.01) # Small delay to reduce CPU usage
def process_frames():
global frame_buffer
while True:
with frame_lock:
if frame_buffer is None:
continue
frame = frame_buffer.copy()
# Downscale the frame for faster processing
frame = cv2.resize(frame, (416, 416))
# Get the height, width, and channels of the frame
height, width, channels = frame.shape
# Detecting objects
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# Showing information on the screen
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
confidence = confidences[i]
color = (0, 255, 0)
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
command = "LEFT 1000 1000 1000 1000" # send command with speed value 50
threading.Thread(target=send_command, args=(command,)).start()
# Display the output image
cv2.imshow('Object Detection', frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Start the threads
capture_thread = threading.Thread(target=capture_frames)
process_thread = threading.Thread(target=process_frames)
capture_thread.start()
process_thread.start()
capture_thread.join()
process_thread.join()
# Release the video capture object and close all OpenCV windows
cap.release()
cv2.destroyAllWindows()
client_socket.close()