forked from hkchengrex/STCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_core_yv.py
123 lines (90 loc) · 4.22 KB
/
inference_core_yv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch
from inference_memory_bank import MemoryBank
from model.eval_network import STCN
from model.aggregate import aggregate
from util.tensor_util import pad_divide_by
class InferenceCore:
def __init__(self, prop_net:STCN, images, num_objects, top_k=20,
mem_every=5, include_last=False, req_frames=None):
self.prop_net = prop_net
self.mem_every = mem_every
self.include_last = include_last
# We HAVE to get the output for these frames
# None if all frames are required
self.req_frames = req_frames
self.top_k = top_k
# True dimensions
t = images.shape[1]
h, w = images.shape[-2:]
# Pad each side to multiple of 16
images, self.pad = pad_divide_by(images, 16)
# Padded dimensions
nh, nw = images.shape[-2:]
self.images = images
self.device = 'cuda'
self.k = num_objects
# Background included, not always consistent (i.e. sum up to 1)
self.prob = torch.zeros((self.k+1, t, 1, nh, nw), dtype=torch.float32, device=self.device)
self.prob[0] = 1e-7
self.t, self.h, self.w = t, h, w
self.nh, self.nw = nh, nw
self.kh = self.nh//16
self.kw = self.nw//16
# list of objects with usable memory
self.enabled_obj = []
self.mem_banks = dict()
def encode_key(self, idx):
result = self.prop_net.encode_key(self.images[:,idx].cuda())
return result
def do_pass(self, key_k, key_v, idx, end_idx):
closest_ti = end_idx
K, CK, _, H, W = key_k.shape
_, CV, _, _, _ = key_v.shape
for i, oi in enumerate(self.enabled_obj):
if oi not in self.mem_banks:
self.mem_banks[oi] = MemoryBank(k=1, top_k=self.top_k)
self.mem_banks[oi].add_memory(key_k, key_v[i:i+1])
last_ti = idx
# Note that we never reach closest_ti, just the frame before it
this_range = range(idx+1, closest_ti)
step = +1
end = closest_ti - 1
for ti in this_range:
is_mem_frame = (abs(ti-last_ti) >= self.mem_every)
# Why even work on it if it is not required for memory/output
if (not is_mem_frame) and (not self.include_last) and (self.req_frames is not None) and (ti not in self.req_frames):
continue
k16, qv16, qf16, qf8, qf4 = self.encode_key(ti)
# After this step all keys will have the same size
out_mask = torch.cat([
self.prop_net.segment_with_query(self.mem_banks[oi], qf8, qf4, k16, qv16)
for oi in self.enabled_obj], 0)
out_mask = aggregate(out_mask, keep_bg=True)
self.prob[0,ti] = out_mask[0]
for i, oi in enumerate(self.enabled_obj):
self.prob[oi,ti] = out_mask[i+1]
if ti != end:
if self.include_last or is_mem_frame:
prev_value = self.prop_net.encode_value(self.images[:,ti].cuda(), qf16, out_mask[1:])
prev_key = k16.unsqueeze(2)
for i, oi in enumerate(self.enabled_obj):
self.mem_banks[oi].add_memory(prev_key, prev_value[i:i+1], is_temp=not is_mem_frame)
if is_mem_frame:
last_ti = ti
return closest_ti
def interact(self, mask, frame_idx, end_idx, obj_idx):
# In youtube mode, we interact with a subset of object id at a time
mask, _ = pad_divide_by(mask.cuda(), 16)
# update objects that have been labeled
self.enabled_obj.extend(obj_idx)
# Set other prob of mask regions to zero
mask_regions = (mask[1:].sum(0) > 0.5)
self.prob[:, frame_idx, mask_regions] = 0
self.prob[obj_idx, frame_idx] = mask[obj_idx]
self.prob[:, frame_idx] = aggregate(self.prob[1:, frame_idx], keep_bg=True)
# KV pair for the interacting frame
key_k, _, qf16, _, _ = self.encode_key(frame_idx)
key_v = self.prop_net.encode_value(self.images[:,frame_idx].cuda(), qf16, self.prob[self.enabled_obj,frame_idx].cuda())
key_k = key_k.unsqueeze(2)
# Propagate
self.do_pass(key_k, key_v, frame_idx, end_idx)