-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlstm.py
136 lines (92 loc) · 3.96 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/python
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import matplotlib.pyplot as plt
# import keras network libraries
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM, GRU
import keras
import pandas as pd
pd.core.common.is_list_like=pd.api.types.is_list_like
from pandas import DataFrame
import pandas_datareader.data as web
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import datetime
import os,sys
def do_main(argv):
stock_dataset=''
if(len(argv)>=3 and argv[2]=='-d'):
stock=argv[1]
now_time = datetime.datetime.now()
past_five_pm=now_time.replace(hour=18, minute=0, second=0, microsecond=0)
weekno=datetime.datetime.today().weekday()
stock_dataset = web.DataReader(argv[1],'iex', datetime.datetime(datetime.datetime.now().year - 5, datetime.datetime.now().month , datetime.datetime.now().day), datetime.datetime.now() + datetime.timedelta(days=1))
stock_dataset['Name']=stock
stock_dataset.to_csv('./stocks/'+argv[1]+'_data.csv')
if(now_time>=past_five_pm and weekno<5):
#get the last value padding ohlcv
current=web.get_last_iex(stock)[0][0]
temphigh=stock_dataset['close'][len(stock_dataset)-1]
templow=stock_dataset['close'][len(stock_dataset)-1]
tempvol=int(stock_dataset['volume'][len(stock_dataset)-1])
previous_close=stock_dataset['close'][len(stock_dataset)-1]
current_date=datetime.datetime.today().strftime('%Y-%m-%d')
if(current>temphigh):
temphigh=current
if(templow>current):
templow=current
with open(os.path.join('.','stocks',stock+'_data.csv'), 'a') as f:
f.write( '%s,%0.2f,%0.2f,%0.2f,%0.2f,%d,%s\n'%(current_date, previous_close, temphigh, templow, current, tempvol, stock))
stock_dataset = pd.read_csv('./stocks/'+argv[1]+'_data.csv')
else:
stock_dataset = pd.read_csv('./stocks/'+argv[1]+'_data.csv')
dataset=stock_dataset['close']
#x_scaler = MinMaxScaler(feature_range=(0, 1))
#y_scaler = MinMaxScaler(feature_range=(0, 1))
window_size = 10
X = []
y = []
for i in range(window_size, len(dataset)):
X.append(dataset[i - window_size:i])
y.append([dataset[i]])
X.append(dataset[len(dataset)-window_size:])
X=np.asarray(X)
y=np.asarray(y)
#X=x_scaler.fit_transform(X)
#y_train=y_scaler.fit_transform(y)
y_train=y
X_train=X[:-1,]
X_test=X[-1:,]
# NOTE: to use keras's RNN LSTM module our input must be reshaped to [samples, window size, stepsize]
X_train = np.asarray(np.reshape(X_train, (X_train.shape[0], window_size, 1)))
X_test = np.asarray(np.reshape(X_test, (X_test.shape[0], window_size, 1)))
# start with fixed random seed
np.random.seed(0)
# Build an RNN to perform regression on our time series input/output data
model = Sequential()
model.add(LSTM(128, input_shape=(window_size, 1), return_sequences=True))
model.add(LSTM(64, return_sequences=True))
model.add(LSTM(32))
model.add(Dense(16))
model.add(Dense(1))
optimizer = keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model.summary()
# compile the model
model.compile(loss='mean_squared_error', optimizer=optimizer)
model.fit(X_train, y_train, epochs=500, batch_size=256, verbose=1)
# generate predictions for training
test_predict = model.predict(X_test)
#prediction=y_scaler.inverse_transform(test_predict)[0][0]
prediction=test_predict[0][0]
dataset=np.asarray(dataset)
history=dataset[-1]
print("Prediction %s: %f vs Last Value: %f"%(argv[1], prediction, history))
if(prediction>history):
return True
else:
return False
if __name__ == "__main__":
sys.exit(0 if do_main(sys.argv)==True else 1)