-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgpt_falcon.py
65 lines (53 loc) · 2.28 KB
/
gpt_falcon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from dotenv import load_dotenv
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import HuggingFaceHub, OpenAI
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os
def main():
load_dotenv()
st.set_page_config(page_title="Ask your pdf")
st.header("Ask your pdf 🤓")
# model selection
selected_model = st.selectbox("Select Language Model", ["OpenAI", "Falcon-7B"])
pdf = st.file_uploader("Upload your pdf", type="pdf")
if pdf is not None:
pdf_reader = PdfReader(pdf)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
text_splitter = CharacterTextSplitter(
separator="\n", # Defines a new line
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
# Initialize embeddings to None
embeddings = None
if selected_model == 'OpenAI':
embeddings = OpenAIEmbeddings()
llm = OpenAI()
elif selected_model == 'Falcon-7B': # Corrected model name
embeddings = HuggingFaceEmbeddings()
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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"
llm = HuggingFaceHub(repo_id="tiiuae/falcon-7b-instruct", model_kwargs={"temperature": 0.1, "max_length": 512})
else:
st.error('Invalid model selection')
# Check if embeddings is not None before using it
if embeddings is not None:
knowledge_base = FAISS.from_texts(chunks, embeddings)
# show user input
user_question = st.text_input("Ask a question about the PDF: ")
if user_question:
docs = knowledge_base.similarity_search(user_question)
# Remove reinitialization of llm
chain = load_qa_chain(llm, chain_type="stuff")
response = chain.run(input_documents=docs, question=user_question)
st.write(response)
if __name__ == '__main__':
main()