-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathextractAtaqvMetric2
executable file
·165 lines (148 loc) · 4.17 KB
/
extractAtaqvMetric2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#!/usr/bin/env python
#
# Vivek Rai
# vivekrai@umich.edu
# (c) Parker Lab
#
#
import argparse
import gzip
import json
import multiprocessing
from itertools import repeat
import os
import pathlib
import signal
import sys
import numpy
acceptable_metrics = [
"reads_with_mate_mapped_to_different_reference",
"duplicate_fraction_not_in_peaks",
"second_reads",
"total_peaks",
"hqaa",
"tss_coverage",
"ff_reads",
"library",
"first_reads",
"fragment_length_counts",
"reverse_reads",
"maximum_proper_pair_fragment_size",
"properly_paired_and_mapped_reads",
"ppm_not_in_peaks",
"fragment_length_counts_fields",
"paired_reads",
"duplicate_reads",
"peaks",
"reads_with_mate_too_distant",
"duplicate_mitochondrial_reads",
"hqaa_in_peaks",
"hqaa_tf_count",
"reads_mapped_and_paired_but_improperly",
"metrics_url",
"total_peak_territory",
"forward_reads",
"peak_duplicate_ratio",
"rr_reads",
"mapq_counts_fields",
"fr_reads",
"peak_percentiles",
"unmapped_reads",
"forward_mate_reads",
"duplicate_autosomal_reads",
"duplicates_not_in_peaks",
"description",
"rf_reads",
"median_mapq",
"secondary_reads",
"total_mitochondrial_reads",
"reverse_mate_reads",
"unmapped_mate_reads",
"unclassified_reads",
"ppm_in_peaks",
"mapq_counts",
"unpaired_reads",
"total_reads",
"mean_mapq",
"hqaa_mononucleosomal_count",
"peaks_fields",
"duplicates_in_peaks",
"supplementary_reads",
"name",
"reads_mapped_with_zero_quality",
"url",
"organism",
"hqaa_overlapping_peaks_percent",
"total_autosomal_reads",
"tss_enrichment",
"short_mononucleosomal_ratio",
"fragment_length_distance",
"qcfailed_reads",
"duplicate_fraction_in_peaks",
]
def worker_init():
signal.signal(signal.SIGINT, signal.SIG_IGN)
def writer(gzip_m):
out = []
with gzip.open(gzip_m, "rb") as f:
try:
p_json = json.loads(f.read())[0]["metrics"]
library_info = p_json["library"]
name = p_json["name"]
for m in args.metrics:
if m == "description":
out.append("{}\t{}\t'{}'\n".format(name, m, library_info[m]))
else:
out.append("{}\t{}\t{}\n".format(name, m, p_json[m]))
except:
sys.stderr.write("Error reading {}..Skipping!\n".format(gzip_m))
return out
if __name__ == "__main__":
parser = argparse.ArgumentParser(
epilog="\n\nAcceptable metrics:\n" + "\n\t".join(acceptable_metrics)
)
parser.add_argument(
"--metrics",
nargs="+",
required=True,
help="Names of metrics to extract (acceptable metrics listed below).",
)
parser.add_argument(
"--files",
nargs="+",
required=True,
help="Ataqv metric files (see the data/ directory of ataqv output directory).",
)
parser.add_argument("--labels", nargs="+", help="Optional labels for the filenames")
parser.add_argument(
"--threads", type=int, default=1, help="Concurrent processes (default: 2)"
)
parser.add_argument(
"--sanitize_names",
action="store_true",
default=False,
help="Sanitize filenames",
)
parser.add_argument(
"--output", default="/dev/stdout", help="Output (default: STDOUT)"
)
args = parser.parse_args()
# Deduplicate the metrics list, if suer supplied it by mistake
args.metrics = list(set(args.metrics))
if args.threads > 1:
print("Using {:d} processes".format(args.threads), file=sys.stderr)
for m in args.metrics:
if m not in acceptable_metrics:
sys.stderr.write(
"Error: do not know how to supply metric {}; exiting\n".format(m)
)
sys.exit(1)
pool = None
if args.threads > 1:
pool = multiprocessing.Pool(processes=args.threads, initializer=worker_init)
written_metrics = (
pool and pool.starmap(writer, args.files) or (writer(x) for x in args.files)
)
with open(args.output, "w") as o:
for w in written_metrics:
o.writelines(w)