-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
126 lines (101 loc) · 4.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from __future__ import print_function
import argparse
import os
import chainer
import chainer.links as L
import chainer.functions as F
from chainer import training
from chainer.training import extensions
from models.qrnn import QRNNLayer
from util.datasets import IMDBDataset
import util.util as util
class QRNNModel(chainer.Chain):
def __init__(self, vocab_size, out_size, hidden_size, dropout):
super().__init__(
layer1=QRNNLayer(out_size, hidden_size),
layer2=QRNNLayer(hidden_size, hidden_size),
layer3=QRNNLayer(hidden_size, hidden_size),
layer4=QRNNLayer(hidden_size, hidden_size),
fc=L.Linear(None, 2)
)
self.embed = L.EmbedID(vocab_size, out_size)
self.dropout = dropout
self.train = True
def __call__(self, x):
h = self.embed(x)
h = F.dropout(self.layer1(h), self.dropout, self.train)
h = F.dropout(self.layer2(h), self.dropout, self.train)
h = F.dropout(self.layer3(h), self.dropout, self.train)
h = F.dropout(self.layer4(h), self.dropout, self.train)
return self.fc(h)
class TestModeEvaluator(extensions.Evaluator):
def evaluate(self):
model = self.get_target('main')
model.train = False
ret = super().evaluate()
model.train = True
return ret
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--batchsize', '-b', type=int, default=24,
help='Number of documents in each mini-batch')
parser.add_argument('--epoch', '-e', type=int, default=20,
help='Number of sweeps over the dataset to train')
parser.add_argument('--gpu', '-g', type=int, default=0,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--out', '-o', default='result',
help='Directory to output the result')
parser.add_argument('--resume', '-r', default='',
help='Resume the training from snapshot')
parser.add_argument('--embeddings', default='',
help='Iinitial word embeddings file')
parser.add_argument('--vocabulary', default='',
help='Vocabulary file')
parser.add_argument('--dataset', default='data/aclImdb', type=str,
help='IMDB dataset path, dir with train/ and test/ folders')
parser.add_argument('--vocab_size', default=68379, type=int,
help='GloVe word embedding dimensions')
parser.add_argument('--out_size', default=300, type=int,
help='GloVe word embedding dimensions')
parser.add_argument('--hidden_size', default=256, type=int,
help='Hidden layers dimensions')
parser.add_argument('--maxlen', default=400, type=int,
help='Maximum sequence time (T) length')
parser.add_argument('--dropout', default=0.3, type=float,
help='Dropout ratio between layers')
return parser.parse_args()
def main():
args = parse_args()
train, test = IMDBDataset(os.path.join(args.dataset, 'train'), args.vocabulary, args.maxlen),\
IMDBDataset(os.path.join(args.dataset, 'test'), args.vocabulary, args.maxlen)
model = L.Classifier(QRNNModel(
args.vocab_size, args.out_size, args.hidden_size, args.dropout))
if args.embeddings:
model.predictor.embed.W.data = util.load_embeddings(
args.embeddings, args.vocab_size, args.out_size)
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use()
model.to_gpu()
model.predictor.embed.to_gpu()
optimizer = chainer.optimizers.RMSprop(lr=0.001, alpha=0.9)
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer.WeightDecay(1e-4))
train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
test_iter = chainer.iterators.SerialIterator(test, args.batchsize,
repeat=False, shuffle=False)
updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
trainer.extend(TestModeEvaluator(test_iter, model, device=args.gpu))
trainer.extend(extensions.ExponentialShift('lr', 0.5),
trigger=(25, 'epoch'))
trainer.extend(extensions.snapshot(), trigger=(args.epoch, 'epoch'))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy']))
trainer.extend(extensions.ProgressBar())
if args.resume:
chainer.serializers.load_npz(args.resume, trainer)
trainer.run()
if __name__ == '__main__':
main()