-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshow_and_tell_model.py
363 lines (296 loc) · 13.3 KB
/
show_and_tell_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Image-to-text implementation based on http://arxiv.org/abs/1411.4555.
"Show and Tell: A Neural Image Caption Generator"
Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# Folder Lib Import
import os
import sys
sys.path.insert(0, os.getcwd() + '/ops')
# Folder Lib Import
import tensorflow as tf
import image_embedding
import image_processing
import inputs as input_ops
class ShowAndTellModel(object):
"""Image-to-text implementation based on http://arxiv.org/abs/1411.4555.
"Show and Tell: A Neural Image Caption Generator"
Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan
"""
def __init__(self, config, mode, train_inception=False):
"""Basic setup.
Args:
config: Object containing configuration parameters.
mode: "train", "eval" or "inference".
train_inception: Whether the inception submodel variables are trainable.
"""
assert mode in ["train", "eval", "inference"]
self.config = config
self.mode = mode
self.train_inception = train_inception
# Reader for the input data.
self.reader = tf.TFRecordReader()
# To match the "Show and Tell" paper we initialize all variables with a
# random uniform initializer.
self.initializer = tf.random_uniform_initializer(
minval=-self.config.initializer_scale,
maxval=self.config.initializer_scale)
# A float32 Tensor with shape [batch_size, height, width, channels].
self.images = None
# An int32 Tensor with shape [batch_size, padded_length].
self.input_seqs = None
# An int32 Tensor with shape [batch_size, padded_length].
self.target_seqs = None
# An int32 0/1 Tensor with shape [batch_size, padded_length].
self.input_mask = None
# A float32 Tensor with shape [batch_size, embedding_size].
self.image_embeddings = None
# A float32 Tensor with shape [batch_size, padded_length, embedding_size].
self.seq_embeddings = None
# A float32 scalar Tensor; the total loss for the trainer to optimize.
self.total_loss = None
# A float32 Tensor with shape [batch_size * padded_length].
self.target_cross_entropy_losses = None
# A float32 Tensor with shape [batch_size * padded_length].
self.target_cross_entropy_loss_weights = None
# Collection of variables from the inception submodel.
self.inception_variables = []
# Function to restore the inception submodel from checkpoint.
self.init_fn = None
# Global step Tensor.
self.global_step = None
def is_training(self):
"""Returns true if the model is built for training mode."""
return self.mode == "train"
def process_image(self, encoded_image, thread_id=0):
"""Decodes and processes an image string.
Args:
encoded_image: A scalar string Tensor; the encoded image.
thread_id: Preprocessing thread id used to select the ordering of color
distortions.
Returns:
A float32 Tensor of shape [height, width, 3]; the processed image.
"""
return image_processing.process_image(encoded_image,
is_training=self.is_training(),
height=self.config.image_height,
width=self.config.image_width,
thread_id=thread_id,
image_format=self.config.image_format)
def build_inputs(self):
"""Input prefetching, preprocessing and batching.
Outputs:
self.images
self.input_seqs
self.target_seqs (training and eval only)
self.input_mask (training and eval only)
"""
if self.mode == "inference":
# In inference mode, images and inputs are fed via placeholders.
image_feed = tf.placeholder(dtype=tf.string, shape=[], name="image_feed")
input_feed = tf.placeholder(dtype=tf.int64,
shape=[None], # batch_size
name="input_feed")
# Process image and insert batch dimensions.
images = tf.expand_dims(self.process_image(image_feed), 0)
input_seqs = tf.expand_dims(input_feed, 1)
# No target sequences or input mask in inference mode.
target_seqs = None
input_mask = None
else:
# Prefetch serialized SequenceExample protos.
input_queue = input_ops.prefetch_input_data(
self.reader,
self.config.input_file_pattern,
is_training=self.is_training(),
batch_size=self.config.batch_size,
values_per_shard=self.config.values_per_input_shard,
input_queue_capacity_factor=self.config.input_queue_capacity_factor,
num_reader_threads=self.config.num_input_reader_threads)
# Image processing and random distortion. Split across multiple threads
# with each thread applying a slightly different distortion.
assert self.config.num_preprocess_threads % 2 == 0
images_and_captions = []
for thread_id in range(self.config.num_preprocess_threads):
serialized_sequence_example = input_queue.dequeue()
encoded_image, caption = input_ops.parse_sequence_example(
serialized_sequence_example,
image_feature=self.config.image_feature_name,
caption_feature=self.config.caption_feature_name)
image = self.process_image(encoded_image, thread_id=thread_id)
images_and_captions.append([image, caption])
# Batch inputs.
queue_capacity = (2 * self.config.num_preprocess_threads *
self.config.batch_size)
images, input_seqs, target_seqs, input_mask = (
input_ops.batch_with_dynamic_pad(images_and_captions,
batch_size=self.config.batch_size,
queue_capacity=queue_capacity))
self.images = images
self.input_seqs = input_seqs
self.target_seqs = target_seqs
self.input_mask = input_mask
def build_image_embeddings(self):
"""Builds the image model subgraph and generates image embeddings.
Inputs:
self.images
Outputs:
self.image_embeddings
"""
inception_output = image_embedding.inception_v3(
self.images,
trainable=self.train_inception,
is_training=self.is_training())
self.inception_variables = tf.get_collection(
tf.GraphKeys.GLOBAL_VARIABLES, scope="InceptionV3")
# Map inception output into embedding space.
with tf.variable_scope("image_embedding") as scope:
image_embeddings = tf.contrib.layers.fully_connected(
inputs=inception_output,
num_outputs=self.config.embedding_size,
activation_fn=None,
weights_initializer=self.initializer,
biases_initializer=None,
scope=scope)
# Save the embedding size in the graph.
tf.constant(self.config.embedding_size, name="embedding_size")
self.image_embeddings = image_embeddings
def build_seq_embeddings(self):
"""Builds the input sequence embeddings.
Inputs:
self.input_seqs
Outputs:
self.seq_embeddings
"""
with tf.variable_scope("seq_embedding"), tf.device("/cpu:0"):
embedding_map = tf.get_variable(
name="map",
shape=[self.config.vocab_size, self.config.embedding_size],
initializer=self.initializer)
seq_embeddings = tf.nn.embedding_lookup(embedding_map, self.input_seqs)
self.seq_embeddings = seq_embeddings
def build_model(self):
"""Builds the model.
Inputs:
self.image_embeddings
self.seq_embeddings
self.target_seqs (training and eval only)
self.input_mask (training and eval only)
Outputs:
self.total_loss (training and eval only)
self.target_cross_entropy_losses (training and eval only)
self.target_cross_entropy_loss_weights (training and eval only)
"""
# This LSTM cell has biases and outputs tanh(new_c) * sigmoid(o), but the
# modified LSTM in the "Show and Tell" paper has no biases and outputs
# new_c * sigmoid(o).
lstm_cell = tf.contrib.rnn.BasicLSTMCell(
num_units=self.config.num_lstm_units, state_is_tuple=True)
if self.mode == "train":
lstm_cell = tf.contrib.rnn.DropoutWrapper(
lstm_cell,
input_keep_prob=self.config.lstm_dropout_keep_prob,
output_keep_prob=self.config.lstm_dropout_keep_prob)
with tf.variable_scope("lstm", initializer=self.initializer) as lstm_scope:
# Feed the image embeddings to set the initial LSTM state.
zero_state = lstm_cell.zero_state(
batch_size=self.image_embeddings.get_shape()[0], dtype=tf.float32)
_, initial_state = lstm_cell(self.image_embeddings, zero_state)
# Allow the LSTM variables to be reused.
lstm_scope.reuse_variables()
if self.mode == "inference":
# In inference mode, use concatenated states for convenient feeding and
# fetching.
tf.concat(axis=1, values=initial_state, name="initial_state")
# Placeholder for feeding a batch of concatenated states.
state_feed = tf.placeholder(dtype=tf.float32,
shape=[None, sum(lstm_cell.state_size)],
name="state_feed")
state_tuple = tf.split(value=state_feed, num_or_size_splits=2, axis=1)
# Run a single LSTM step.
lstm_outputs, state_tuple = lstm_cell(
inputs=tf.squeeze(self.seq_embeddings, axis=[1]),
state=state_tuple)
# Concatentate the resulting state.
tf.concat(axis=1, values=state_tuple, name="state")
else:
# Run the batch of sequence embeddings through the LSTM.
sequence_length = tf.reduce_sum(self.input_mask, 1)
lstm_outputs, _ = tf.nn.dynamic_rnn(cell=lstm_cell,
inputs=self.seq_embeddings,
sequence_length=sequence_length,
initial_state=initial_state,
dtype=tf.float32,
scope=lstm_scope)
# Stack batches vertically.
lstm_outputs = tf.reshape(lstm_outputs, [-1, lstm_cell.output_size])
with tf.variable_scope("logits") as logits_scope:
logits = tf.contrib.layers.fully_connected(
inputs=lstm_outputs,
num_outputs=self.config.vocab_size,
activation_fn=None,
weights_initializer=self.initializer,
scope=logits_scope)
if self.mode == "inference":
tf.nn.softmax(logits, name="softmax")
else:
targets = tf.reshape(self.target_seqs, [-1])
weights = tf.to_float(tf.reshape(self.input_mask, [-1]))
# Compute losses.
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=targets,
logits=logits)
batch_loss = tf.div(tf.reduce_sum(tf.multiply(losses, weights)),
tf.reduce_sum(weights),
name="batch_loss")
tf.losses.add_loss(batch_loss)
total_loss = tf.losses.get_total_loss()
# Add summaries.
tf.summary.scalar("losses/batch_loss", batch_loss)
tf.summary.scalar("losses/total_loss", total_loss)
for var in tf.trainable_variables():
tf.summary.histogram("parameters/" + var.op.name, var)
self.total_loss = total_loss
self.target_cross_entropy_losses = losses # Used in evaluation.
self.target_cross_entropy_loss_weights = weights # Used in evaluation.
def setup_inception_initializer(self):
"""Sets up the function to restore inception variables from checkpoint."""
if self.mode != "inference":
# Restore inception variables only.
saver = tf.train.Saver(self.inception_variables)
def restore_fn(sess):
tf.logging.info("Restoring Inception variables from checkpoint file %s",
self.config.inception_checkpoint_file)
saver.restore(sess, self.config.inception_checkpoint_file)
self.init_fn = restore_fn
def setup_global_step(self):
"""Sets up the global step Tensor."""
global_step = tf.Variable(
initial_value=0,
name="global_step",
trainable=False,
collections=[tf.GraphKeys.GLOBAL_STEP, tf.GraphKeys.GLOBAL_VARIABLES])
self.global_step = global_step
def build(self):
"""Creates all ops for training and evaluation."""
self.build_inputs()
self.build_image_embeddings()
self.build_seq_embeddings()
self.build_model()
self.setup_inception_initializer()
self.setup_global_step()