-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulator.py
139 lines (110 loc) · 4.91 KB
/
simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import time
import os
from geone import deesseinterface
from ensemble import Ensemble, EmptyEnsembleError
class DS:
def __init__(self,
root_dir,
nneighboringNode,
distanceThreshold,
maxScanFraction,
):
self.nneighboringNode = nneighboringNode
self.distanceThreshold = distanceThreshold
self.maxScanFraction = maxScanFraction
self.results_dir = self.results_dir(root_dir)
self.time_file = os.path.join(self.results_dir, 'time-seconds.txt')
def create_ensemble(self, ti, ensemble_size, nthreads, seed=444, overwrite=False, dtype='int8'):
deesse_input = self.deesse_input(ti, ensemble_size, nthreads, seed)
# run deeesse and measure time
tic = time.perf_counter()
deesse_output = self.run_deesse(deesse_input, nthreads)
toc = time.perf_counter()
elapsed_time = toc-tic
# build ensemble
deesse_ensemble = Ensemble.from_deesse_output(deesse_output)
deesse_ensemble.to_directory(self.results_dir, overwrite=overwrite, dtype=dtype)
# then write time (to handle overwrite correctly)
self.write_timing(elapsed_time)
return deesse_ensemble, elapsed_time
def get_ensemble(self, ti, ensemble_size, nthreads, seed=444, overwrite=False, dtype='int8'):
try:
ensemble, timing = self.read_ensemble()
if len(ensemble) < ensemble_size:
raise EmptyEnsembleError("Too small ensemble")
except (EmptyEnsembleError, FileNotFoundError):
ensemble, timing = self.create_ensemble(ti, ensemble_size, nthreads, seed=seed, overwrite=True, dtype=dtype)
return ensemble, timing
def read_ensemble(self):
ensemble = Ensemble.from_directory(self.results_dir)
timing = self.read_timing()
return ensemble, timing
def write_timing(self, timing):
with open(self.time_file, 'w') as fh:
fh.write(str(timing))
def read_timing(self):
with open(self.time_file, 'r') as fh:
return float(fh.read())
def results_dir(self, root_dir):
return os.path.join(root_dir, f'ds-{self.nneighboringNode}-{self.distanceThreshold}-{self.maxScanFraction}')
class DSBC(DS):
def __init__(self,
root_dir,
nneighboringNode,
maxScanFraction,
distanceThreshold=0,
):
# threshold = 0 irrespectively of user's input
super().__init__(root_dir=root_dir,
nneighboringNode=nneighboringNode,
distanceThreshold=0,
maxScanFraction=maxScanFraction,
)
def results_dir(self, root_dir):
return os.path.join(root_dir, f'dsbc-{self.nneighboringNode}-{self.maxScanFraction}')
class FluvialMixin:
def deesse_input(self, ti, ensemble_size, nthreads, seed):
epsilon = 1e-5
pyrGenParams = deesseinterface.PyramidGeneralParameters(
npyramidLevel=2,
kx=[2, 2], ky=[2, 2], kz=[0, 0]
)
pyrParams = deesseinterface.PyramidParameters(
nlevel=2,
pyramidType='categorical_auto'
)
deesse_input = deesseinterface.DeesseInput(
nx=200, ny=200, nz=1,
nv=1, varname='code',
nTI=1, TI=ti,
distanceType='categorical',
nneighboringNode=self.nneighboringNode,
distanceThreshold=self.distanceThreshold+epsilon,
maxScanFraction=self.maxScanFraction,
pyramidGeneralParameters=pyrGenParams, # set pyramid general parameters
pyramidParameters=pyrParams, # set pyramid parameters for each variable
npostProcessingPathMax=1,
seed=seed,
nrealization=ensemble_size)
return deesse_input
def run_deesse(self, deesse_input, nthreads):
print('Running standard')
return deesseinterface.deesseRun(deesse_input, nthreads=nthreads)
class FluvialDS(DS, FluvialMixin):
def __init__(self, nneighboringNode,
distanceThreshold,
maxScanFraction,
root_dir):
super().__init__(root_dir=root_dir,
nneighboringNode=nneighboringNode,
distanceThreshold=distanceThreshold,
maxScanFraction=maxScanFraction)
class FluvialDSBC(DSBC, FluvialMixin):
def __init__(self, nneighboringNode,
distanceThreshold,
maxScanFraction,
root_dir):
super().__init__(root_dir=root_dir,
nneighboringNode=nneighboringNode,
distanceThreshold=distanceThreshold,
maxScanFraction=maxScanFraction,)