forked from andrewliao11/dni.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
30 lines (27 loc) · 1.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import argparse
from train import *
import torch
from dataset import *
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='DNI')
parser.add_argument('--dataset', choices=['mnist', 'cifar10'], default='cifar10')
parser.add_argument('--num_epochs', type=int, default=300)
parser.add_argument('--model_type', choices=['mlp', 'cnn'], default='cnn',
help='currently support mlp and cnn')
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--conditioned', type=bool, default=False)
parser.add_argument('--plot', type=bool, default=False)
parser.add_argument('--use_gpu', type=bool, default=True)
args = parser.parse_args()
# do not support using mlp to trian cifar
assert args.dataset != 'cifar10' or args.model_type != 'mlp'
model_name = '%s.%s_dni'%(args.dataset, args.model_type, )
if args.conditioned:
model_name += '.conditioned'
args.model_name = model_name
if args.dataset == 'mnist':
data = mnist(args)
elif args.dataset == 'cifar10':
data = cifar10(args)
m = classifier(args, data)
m.train_model()