-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimg_ops.c
414 lines (337 loc) · 11 KB
/
img_ops.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
// Copyright Rares-Stefan Goidescu 312CAb 2023-2024
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "mem_ops.h"
#include "basic_ops.h"
#include "img_struct.h"
/******************************PRIVATE FUNCTIONS******************************/
void histogram(img_data data, int from_x, int from_y, int to_x, int to_y,
int *freq)
{
for (int i = 0; i < 256; i++)
freq[i] = 0;
// Cream vectorul de frecventa pentru o imagine grayscale
for (int i = from_y; i < to_y; ++i)
for (int j = from_x; j < to_x; ++j)
freq[data.pixel_map[i][j]]++;
}
int clamp(int value)
{
if (value < 0)
return 0;
if (value > 255)
return 255;
return value;
}
/* Intorc imaginea 180 de grade si in oglinda (in-place) */
void up_side_down(img_data *data, int from_x, int from_y, int to_x, int to_y)
{
int height = to_y - from_y, width = to_x - from_x;
for (int i = 0; i < height / 2; ++i) {
for (int j = 0; j < width; ++j) {
unsigned int aux = data->pixel_map[from_y + i][from_x + j];
data->pixel_map[from_y + i][from_x + j] =
data->pixel_map[to_y - i - 1][to_x - j - 1];
data->pixel_map[to_y - i - 1][to_x - j - 1] = aux;
}
}
if (height % 2) {
for (int i = 0; i < width / 2; i++) {
unsigned int aux;
aux = data->pixel_map[from_y + height / 2][from_x + i];
data->pixel_map[from_y + height / 2][from_x + i] =
data->pixel_map[from_y + height / 2][to_x - i - 1];
data->pixel_map[from_y + height / 2][to_x - i - 1] = aux;
}
}
}
/* Intorc imaginea la stanga 90 de grade */
void turn_left(img_data *data, int *from_x, int *from_y, int *to_x, int *to_y,
int all)
{
int height = *to_y - *from_y, width = *to_x - *from_x;
// Intorc imaginea 90 de grade la stanga cu o matrice auxiliara
unsigned int **tmp = allocate_matrix(width, height);
for (int i = 0; i < height; i++)
for (int j = 0; j < width; j++)
tmp[width - j - 1][i] = data->pixel_map[*from_y + i][*from_x + j];
// In caz ca selectia este integrala, se vor interschimba dimensiunile
if (all) {
deallocate_matrix(data->pixel_map, data->height);
data->height = width;
data->width = height;
data->pixel_map = allocate_matrix(data->height, data->width);
for (int i = 0; i < data->height; ++i) // copiem rezultatul
for (int j = 0; j < data->width; ++j)
data->pixel_map[i][j] = tmp[i][j];
my_swap(from_x, from_y);
my_swap(to_x, to_y);
} else {
for (int i = 0; i < height; ++i) // copiem rezultatul
for (int j = 0; j < width; ++j)
data->pixel_map[*from_y + i][*from_x + j] = tmp[i][j];
}
deallocate_matrix(tmp, width);
}
/* Intorc imaginea la dreapta 90 de grade */
void turn_right(img_data *data, int *from_x, int *from_y, int *to_x, int *to_y,
int all)
{
int height = *to_y - *from_y, width = *to_x - *from_x;
// Intorc imaginea 90 de grade la dreapta cu o matrice auxiliara
unsigned int **tmp = allocate_matrix(width, height);
for (int i = 0; i < height; i++)
for (int j = 0; j < width; j++)
tmp[j][height - i - 1] = data->pixel_map[*from_y + i][*from_x + j];
// In caz ca selectia este integrala, se vor interschimba dimensiunile
if (all) {
deallocate_matrix(data->pixel_map, data->height);
data->height = width;
data->width = height;
data->pixel_map = allocate_matrix(data->height, data->width);
for (int i = 0; i < data->height; ++i) // copiem rezultatul
for (int j = 0; j < data->width; ++j)
data->pixel_map[i][j] = tmp[i][j];
my_swap(from_x, from_y);
my_swap(to_x, to_y);
} else {
for (int i = 0; i < height; ++i) // copiem rezultatul
for (int j = 0; j < width; ++j)
data->pixel_map[*from_y + i][*from_x + j] = tmp[i][j];
}
deallocate_matrix(tmp, width);
}
void exclude_edges(int *from_x, int *from_y, int *to_x, int *to_y,
img_data data)
{
*from_x = (*from_x == 0) ? 1 : *from_x;
*from_y = (*from_y == 0) ? 1 : *from_y;
*to_x = (*to_x == data.width) ? data.width - 1 : *to_x;
*to_y = (*to_y == data.height) ? data.height - 1 : *to_y;
}
/* Functie care alege ce kernel trebuie folosit in functie de comanda */
int choose_kernel(double **kernel, char param[])
{
double edge_mat[3][3] = {{-1., -1., -1.},
{-1., 8., -1.},
{-1., -1., -1.}};
double sharpen_mat[3][3] = {{0., -1., 0.},
{-1., 5., -1.},
{0., -1., 0.}};
double blur_mat[3][3] = {{1 / 9., 1 / 9., 1 / 9.},
{1 / 9., 1 / 9., 1 / 9.},
{1 / 9., 1 / 9., 1 / 9.}};
double g_blur_mat[3][3] = {{1 / 16., 2 / 16., 1 / 16.},
{2 / 16., 4 / 16., 2 / 16.},
{1 / 16., 2 / 16., 1 / 16.}};
if (!strcmp(param, "EDGE")) {
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
kernel[i][j] = edge_mat[i][j];
} else if (!strcmp(param, "SHARPEN")) {
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
kernel[i][j] = sharpen_mat[i][j];
} else if (!strcmp(param, "BLUR")) {
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
kernel[i][j] = blur_mat[i][j];
} else if (!strcmp(param, "GAUSSIAN_BLUR")) {
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
kernel[i][j] = g_blur_mat[i][j];
} else {
if (!strcmp(param, "")) {
puts("Invalid command");
return 0;
}
puts("APPLY parameter invalid");
return 0;
}
return 1;
}
/*****************************EXPORTED FUNCTIONS******************************/
/* Functie care printeaza histograma unei imagini grayscale */
void print_histogram(img_data data, int from_x, int from_y, int to_x, int to_y,
int astks, int bins, int colored)
{
/*
formula = (fq / max(fq)) * astks
*/
if (colored) {
puts("Black and white image needed");
return;
}
int freq[256];
histogram(data, from_x, from_y, to_x, to_y, freq);
for (int i = 0; i < 256; i += 256 / bins) {
int sum = 0;
for (int j = i; j < i + (256 / bins); ++j)
sum += freq[j];
for (int j = i; j < i + (256 / bins); ++j)
freq[j] = sum;
}
int maxfq = 0;
for (int i = 0; i < 256; i += 256 / bins)
if (freq[i] > maxfq)
maxfq = freq[i];
for (int i = 0; i < 256; i += 256 / bins) {
double nastk = ((double)freq[i] / (double)maxfq) * (double)astks;
printf("%d\t|\t", (int)nastk);
for (int j = 0; j < (int)nastk; ++j)
printf("*");
printf("\n");
}
}
/* Functie care "egalizeaza" o imagine grayscale dupa formula */
void equalize(img_data *data, int colored)
{
/*
formula: f(a) = 255 / Area * Sum from 0 to a ( H(i) )
-> you meant cdf?
*/
if (colored) {
puts("Black and white image needed");
return;
}
long long area = data->height * data->width;
int H[256];
histogram(*data, 0, 0, data->width, data->height, H);
long sum[256]; // sum = cdf
for (int i = 0; i < 256; ++i)
sum[i] = 0;
sum[0] = H[0];
for (int i = 1; i < 256; ++i)
sum[i] = sum[i - 1] + H[i];
for (int i = 0; i < 256; ++i)
sum[i] = clamp(round(255. * (double)sum[i]) / (double)area);
for (int i = 0; i < data->height; ++i)
for (int j = 0; j < data->width; ++j)
data->pixel_map[i][j] = sum[data->pixel_map[i][j]];
puts("Equalize done");
}
/* Functie care pastreaza doar selectia curenta din toata imaginea */
void crop(img_data *data, int *from_x, int *from_y, int *to_x, int *to_y)
{
int width, height;
width = *to_x - *from_x;
height = *to_y - *from_y;
unsigned int **cropped_map = allocate_matrix(height, width);
for (int i = 0; i < height; ++i)
for (int j = 0; j < width; ++j)
cropped_map[i][j] = data->pixel_map[*from_y + i][*from_x + j];
// printf("%d\t|\t%d\n", data->height, data->width);
deallocate_matrix(data->pixel_map, data->height);
data->pixel_map = allocate_matrix(height, width);
for (int i = 0; i < height; i++)
for (int j = 0; j < width; ++j)
data->pixel_map[i][j] = cropped_map[i][j];
data->height = height;
data->width = width;
*from_x = 0;
*from_y = 0;
*to_x = data->width;
*to_y = data->height;
// printf("%d\t|\t%d\n", height, width);
deallocate_matrix(cropped_map, height);
puts("Image cropped");
}
/* Functie care aplica un filtru pe o imagine color (folosind kernels) */
void apply(img_data *data, char *param, int from_x, int from_y,
int to_x, int to_y, int colored)
{
double **kernel = allocate_double_matrix(3, 3);
int err = choose_kernel(kernel, param);
if (!err)
return;
if (!colored) {
puts("Easy, Charlie Chaplin");
deallocate_double_matrix(kernel, 3);
return;
}
// Tratam cazul in care selectia este toata imaginea, pentru ca pixelii
// care nu au destui vecini, nu trebuie schimbati
exclude_edges(&from_x, &from_y, &to_x, &to_y, *data);
unsigned int **newpixel_map = allocate_matrix(data->height, data->width);
for (int i = from_y; i < to_y; ++i) {
for (int j = from_x; j < to_x; ++j) {
int red[3][3], green[3][3], blue[3][3];
for (int k = 0; k < 3; k++)
for (int l = 0; l < 3; l++) {
// Unpacking
unsigned int p = data->pixel_map[i + k - 1][j + l - 1];
int alph = p >> 24;
blue[k][l] = (p >> 16) & alph;
green[k][l] = (p >> 8) & alph;
red[k][l] = (p) & alph;
}
// Aplicam filtrul
double new_red = 0, new_green = 0, new_blue = 0;
for (int k = 0; k < 3; k++) {
for (int l = 0; l < 3; l++) {
new_red += red[k][l] * kernel[k][l];
new_green += green[k][l] * kernel[k][l];
new_blue += blue[k][l] * kernel[k][l];
}
}
int r = clamp(round(new_red));
int g = clamp(round(new_green));
int b = clamp(round(new_blue));
newpixel_map[i][j] = 0; // Packing
newpixel_map[i][j] = data->alpha << 24 | b << 16 | g << 8 | r;
}
}
for (int i = from_y; i < to_y; ++i) // copiem rezultatul
for (int j = from_x; j < to_x; ++j)
data->pixel_map[i][j] = newpixel_map[i][j];
deallocate_matrix(newpixel_map, data->height);
deallocate_double_matrix(kernel, 3);
printf("APPLY %s done\n", param);
}
void rotate(img_data *data, int *from_x, int *from_y, int *to_x, int *to_y,
int angle)
{
if (abs(angle) % 90 != 0) {
puts("Unsupported rotation angle");
return;
}
int r_height = *to_y - *from_y; // calculam dimensiunile selectiei
int r_width = *to_x - *from_x;
int all = (r_height == data->height && r_width == data->width) ? 1 : 0;
if (!(all)) {
if (r_height != r_width) {
puts("The selection must be square");
return;
}
}
/*
360 => 0 | -360 => 0
270 => 3 => -1 | -270 => -3 => 1
180 => 2 => 2 | -180 => -2 => 2
90 => 1 | -90 => -1
0 => 0 | -0 => 0
Simplificam unghiurile pentru a putea folosi o metoda mai eficienta din
punct de vedere al timpului de executie, si astfel, de la 10 cazuri
ajungem la 3: -90, 180, 90.
*/
int simple_angle = (angle / 90) % 4;
simple_angle = (simple_angle == -3) ? 1 : simple_angle;
simple_angle = (simple_angle == 3) ? -1 : simple_angle;
simple_angle = (abs(simple_angle) == 2) ? 2 : simple_angle;
if (simple_angle == 0) { // tratam cazul banal :)
printf("Rotated %d\n", angle);
return;
}
// simple_angle == 2 => up_side_down()
// simple_angle == 1 => turn_right()
// simple_angle == -1 => turn_left()
if (simple_angle == 2)
up_side_down(data, *from_x, *from_y, *to_x, *to_y);
else if (simple_angle == -1)
turn_left(data, from_x, from_y, to_x, to_y, all);
else if (simple_angle == 1)
turn_right(data, from_x, from_y, to_x, to_y, all);
printf("Rotated %d\n", angle);
}