-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathBinarySearchTree.kt
363 lines (314 loc) · 10.3 KB
/
BinarySearchTree.kt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
package algorithmdesignmanualbook.datastructures
import algorithmdesignmanualbook.withPrint
import kotlin.test.assertEquals
import kotlin.test.assertFails
import kotlin.test.assertFalse
import kotlin.test.assertTrue
open class BinarySearchTree(private var node: Node) {
fun getNode() = node
open fun add(newNode: Node) {
if (node.value < newNode.value) {
if (node.right == null) {
newNode.parent = node
node.right = newNode
} else {
BinarySearchTree(node.right!!).add(newNode)
}
} else {
if (node.left == null) {
newNode.parent = node
node.left = newNode
} else {
BinarySearchTree(node.left!!).add(newNode)
}
}
}
/**
* [GeeksForGeek](https://www.geeksforgeeks.org/binary-search-tree-set-2-delete/)
* Three possibilities on delete:
* * Delete at root, in this case, in-order search its right and make the min as root
* * Delete leaf, then just remove it
* * Delete mid, then remove the node and link the its parent to its child
*/
open fun deleteFirst(value: Int) {
val currentNode = findOrNull(value) ?: return
val parent = currentNode.parent
if (parent == null) {
// is root node
// This is the only one node!
if (isLeafNode(currentNode)) {
throw RuntimeException("Only one node remaining. Can't delete")
}
// All nodes are at left so make the left node as root
if (currentNode.right == null) {
val temp = currentNode.left!!
temp.parent = null
node = temp
} else {
// inorder traverse from right node and get the min node and make it root
val minNodeAtRight = findMinFrom(currentNode.right)!!
// delete the reference so that [minNodeAtRight] can be moved to the root
when {
minNodeAtRight.parent?.left?.value == minNodeAtRight.value -> {
minNodeAtRight.parent?.left = null
}
minNodeAtRight.parent?.right?.value == minNodeAtRight.value -> {
minNodeAtRight.parent?.right = null
}
}
minNodeAtRight.parent = null
minNodeAtRight.left = currentNode.left
minNodeAtRight.right = currentNode.right
minNodeAtRight.left?.parent = minNodeAtRight
minNodeAtRight.right?.parent = minNodeAtRight
node = minNodeAtRight
}
} else if (isLeafNode(currentNode)) {
// If leaf node, just remove it
if (parent.left?.value == value) {
parent.left = null
} else {
parent.right = null
}
} else {
// is mid node
val tempParent = currentNode.parent!!
val isAtLeft = tempParent.left?.value == currentNode.value
// make it root temporarily
currentNode.parent = null
val tempTree = BinarySearchTree(currentNode)
// delete itself and now the parent==null i.e (is root node) condition holds
tempTree.deleteFirst(currentNode.value)
// Now that the root node is deleted in [tempTree], change the parent of remaining node
tempTree.node.parent = tempParent
// Join the tempTree with the old tree
if (isAtLeft) {
// if it is at left of parent, put it at left
tempParent.left = tempTree.node
} else {
tempParent.right = tempTree.node
}
}
}
fun deleteKthSmallestElement(k: Int) {
val nodes = mutableListOf<BinarySearchTree>()
traverseInOrder(node.toBST(), nodes, k)
if (nodes.size < k) {
throw RuntimeException("k is too large")
}
val nodeToBeDeleted = nodes.lastOrNull()?.node
nodeToBeDeleted?.value?.let {
println("Deleting $it")
deleteFirst(it)
}
}
private fun traverseInOrder(root: BinarySearchTree?, nodes: MutableList<BinarySearchTree>, until: Int) {
require(until > 0)
if (root == null) {
return
}
traverseInOrder(root.node.left?.toBST(), nodes, until)
// Requires double check
if (nodes.size < until) {
nodes.add(root.node.toBST())
} else {
return
}
traverseInOrder(root.node.right?.toBST(), nodes, until)
}
/**
* In order traversal
*/
fun findMinFrom(node: Node?): Node? {
if (node?.left == null) {
return node
}
return findMinFrom(node.left)
}
fun isLeafNode(node: Node) = node.isLeafNode()
fun print() {
println(node)
}
fun findOrNull(value: Int): Node? {
if (value == node.value) {
return node
}
if (value < node.value) {
node.left?.let {
val subTree = BinarySearchTree(it)
return subTree.findOrNull(value)
} ?: return null
} else {
node.right?.let {
val subTree = BinarySearchTree(it)
return subTree.findOrNull(value)
} ?: return null
}
}
fun min(): Int {
var min: Node = this.node
while (min.left != null) {
min = min.left!!
}
return min.value
}
fun max(): Int {
var max: Node = this.node
while (max.right != null) {
max = max.right!!
}
return max.value
}
fun traverseInOrder() {
node.left?.toBST()?.traverseInOrder()
println(node.value)
node.right?.toBST()?.traverseInOrder()
}
fun traversePreOrder() {
println(node.value)
node.left?.toBST()?.traversePreOrder()
node.right?.toBST()?.traversePreOrder()
}
fun traversePostOrder() {
node.left?.toBST()?.traversePostOrder()
node.right?.toBST()?.traversePostOrder()
println(node.value)
}
fun parentOfFirstValue(value: Int): Node? {
return findOrNull(value)?.parent
}
fun height(): Int {
return kotlin.math.max(node.left?.toBST()?.height() ?: 0, node.right?.toBST()?.height() ?: 0) + 1
}
fun getRoot() = node
}
fun main() {
example1()
testForDeletion()
testForDeleteKthSmallestElement()
}
fun testForDeleteKthSmallestElement() {
// 10
// 6 15
// 4 7 12 19
val bst = createBST()
withPrint("3rd smallest item") {
bst.deleteKthSmallestElement(3)
assertTrue { bst.findOrNull(7) == null }
}
assertFails { bst.deleteKthSmallestElement(1000000) }
withPrint("6th smallest item") {
bst.deleteKthSmallestElement(6)
assertTrue { bst.findOrNull(19) == null }
}
assertFails { bst.deleteKthSmallestElement(6) }
}
fun createBST(): BinarySearchTree {
val node10 = Node.create(10)
val node6 = Node.create(6)
val node15 = Node.create(15)
val node4 = Node.create(4)
val node7 = Node.create(7)
val node12 = Node.create(12)
val node19 = Node.create(19)
val bst = BinarySearchTree(node10)
bst.add(node6)
bst.add(node15)
bst.add(node4)
bst.add(node7)
bst.add(node12)
bst.add(node19)
return bst
}
private fun testForDeletion() {
val bst = createBST()
// 10
// 6 15
// 4 7 12 19
bst.print()
assertTrue { bst.min() == 4 }
// delete leaf
// 10
// 6 15
// 7 12 19
bst.deleteFirst(4)
assertTrue { bst.min() == 6 }
assertTrue { bst.max() == 19 }
// delete non leaf and non-root
bst.deleteFirst(6)
// 10
// 7 15
// 12 19
withPrint("After deleting 6") {
bst.print()
}
assertTrue { bst.min() == 7 }
assertTrue { bst.getRoot().value == 10 }
assertTrue { bst.getRoot().left?.value == 7 }
bst.deleteFirst(15)
// 10
// 7 19
// 12
assertTrue { bst.getRoot().right?.value == 19 }
assertTrue { bst.getRoot().right?.parent?.value == 10 }
assertTrue { bst.getRoot().right?.left?.value == 12 }
assertTrue { bst.getRoot().left?.value == 7 }
assertTrue { bst.getRoot().left?.parent?.value == 10 }
// 10
// 7 19*
// 12
bst.deleteFirst(19)
// 10
// 7 12
withPrint("Delete 19") {
bst.print()
}
assertTrue { bst.getRoot().right?.value == 12 }
assertTrue { bst.getRoot().left?.value == 7 }
bst.deleteFirst(10)
// 12
// 7
assertTrue { bst.getRoot().value == 12 }
assertTrue { bst.getRoot().left?.value == 7 }
// 7
//
bst.deleteFirst(12)
assertTrue { bst.getRoot().value == 7 }
}
private fun example1() {
val node6 = Node.create(6)
val bst = BinarySearchTree(node6)
val node1 = Node.create(1).also(bst::add)
val node4 = Node.create(4).also(bst::add)
val node7 = Node.create(7).also(bst::add)
val node10 = Node.create(10).also(bst::add)
val node0 = Node.create(0).also(bst::add)
assertTrue { bst.isLeafNode(node0) }
assertFalse { bst.isLeafNode(node1) }
bst.print()
assertTrue(bst.findOrNull(1) != null)
assertTrue(bst.findOrNull(100) == null)
assertTrue(bst.max() == 10)
assertTrue(bst.min() == 0)
assertEquals(bst.parentOfFirstValue(1), node6)
assertEquals(bst.parentOfFirstValue(4), node1)
assertEquals(bst.parentOfFirstValue(7), node6)
assertEquals(bst.parentOfFirstValue(10), node7)
println("Inorder traversal")
bst.traverseInOrder()
println("Pre-order traversal")
bst.traversePreOrder()
println("Post-order traversal")
bst.traversePostOrder()
bst.deleteFirst(node0.value)
assertTrue(bst.min() == 1)
assertTrue(bst.findOrNull(0) == null)
assertTrue(bst.height() == 3)
bst.deleteFirst(node0.value)
bst.deleteFirst(node4.value)
bst.deleteFirst(node10.value)
assertTrue(bst.height() == 2)
bst.print()
bst.deleteFirst(node6.value)
bst.print()
}