-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpcaData.py
48 lines (37 loc) · 1.17 KB
/
pcaData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
from data import Data
class PCAData(Data):
def __init__(self, headers, pdata, evals, evecs, means, filename = None):
Data.__init__(self)
self.eigenValues = evals
self.eigenVectors = evecs
self.dataMeans = means
self.dataHeaders = headers
self.matrix_data = pdata
# add to raw_headers and raw data types
for idx in range(len(headers)):
if idx > 9:
self.raw_headers.append("P%d" % (idx))
else:
self.raw_headers.append("P0%d" % (idx))
self.raw_types.append("numeric")
# print self.raw_headers
# add a numpy array to raw_data
self.raw_data = np.squeeze(np.asarray(pdata))
# add to header2raw and header2matrix
for index in range(len(self.raw_headers)):
self.header2raw[self.raw_headers[index]] = index
self.header2matrix[self.raw_headers[index]] = index
def get_eigenvalues(self):
# print type(self.eigenValues)
return self.eigenValues
def get_eigenvectors(self):
return self.eigenVectors
def get_data_means(self):
return self.dataMeans
def get_PCA_headers(self):
return self.raw_headers
def get_original_headers(self):
return self.dataHeaders
if __name__ == "__main__":
pca = PCAData()