-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresultsplots_OGTT26jours.jl
executable file
·175 lines (157 loc) · 7.67 KB
/
resultsplots_OGTT26jours.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# NEEDED MODULES -- This can take time at the first launch
# Code main be needed to run twice to plot correctly (shift-enter)
using DifferentialEquations
using Plots
using LaTeXStrings
# Load the backend (engine) for plotting based on javascript
plotlyjs()
function weighted_leastsquare(O,R,E)
denom = sum(O.^2)
weights = 1. / (E.^2)
return sqrt(sum(weights.*(O-R).^2)/denom)
end
function leastsquare(O,R)
denom = sum(O.^2)
return sqrt(sum((O-R).^2)/denom)
end
# Saturation function to positive values
# (concentrations are positive function)
# This is just used as a safety for the parameter search phase
@inline function sat(x)
if x < 0.0
return 0.0
else
x
end
end
# Gaussian model of plasma Glucose appearance rate
function GlcGauss(t)
σ = 35.0 # width
μ = 30.0 # peak time
dose = 4040 # total glucose dose (area under curve)
return dose*1/(σ*sqrt(2*pi))*exp((-(t-μ)^2/(2*σ^2)))
end
# Parametric ODEs of te Glucose response model
# t : time
# u : variables
# p : parameters
# Here I call the guassian model of glucose input GlcGauss(t)
# And I saturate the variables to the positive cone
function f_param!(du,u,p,t)
du[1] = -p[1]*(sat(u[1])-p[2])- p[10]*sat(u[2])*sat(u[1])+GlcGauss(t)
du[2] = -p[3]*sat(u[2])+p[4]*(sat(u[3])-p[5])
du[3] = -p[6]*sat(u[3])+p[7]*(sat(u[1])-p[8])*t + p[9]*u[4]
du[4] = -p[9]*u[4]
end
# Initial conditions at 26j
u0 = [76.0,0.0,34.0,5950]
tspan = (0.0,120.0)
# # A Parameter set from the MINMOD model as a reference
# # p1 Gb p2 p3 Ib n γ h |added parameters => | p4 r
# p0 = [0.01,100.0,0.01,0.00001,8.0,0.1,0.01,100.0, 0.07,1.0]
# Fitted parameter set to the control group at 26 Days ===> err: 0.00315
# p1 Gb p2 p3 Ib n γ h p4 r
p0 = [0.01, 100.0, 0.61, 0.0245, 05.0, 09.44, 0.0110, 79.0, 0.0215, 1.0]
###################################################
## Simulation of the Control experiment at 26Days
prob_param = ODEProblem(f_param!,u0,tspan,p0)
sctrl = solve(prob_param, alg_hints = [:stiff])
## Experimental results
texp = [0,10,20,30,45,60,90,120]
glcexp = [75.4,133.4,166.5,184.7,186.5,164.8,126.4,111.7]
uppererror = [3.2,6.7,5.9,5.6,4.1,3.6,3.3,3.4]
lowererror = [3.2,6.7,5.9,5.6,4.1,3.6,3.3,3.4]
errs = [lowererror;uppererror]
res_tot = [sctrl(ti) for ti in texp]
res = [ri[1] for ri in res_tot]
## Computation of the weighted least square error and least square
wls_err_Ctrl = weighted_leastsquare(glcexp,res,uppererror)
print("CONTROL wls = ", wls_err_Ctrl, "\n")
ls_err_Ctrl = leastsquare(glcexp,res)
## Generation of the figure and first plots
plot(sctrl,vars=[(0,1)],label="Glucose (control) simulations")
scatter!(texp,glcexp,yerr = errs,marker = stroke(2, :blue),
xlabel="time (min)", ylabel= "Concentration: mg/dL",
label="Control exp results", legend=:top, markerstrokecolor = :auto)
# Parameters sets for the different hypothesis for the group CD1 at 26 Days
########################################################################
# Control parameter set ===> err: 0.00972
# p1 Gb p2 p3 Ib n γ h p4 r
# p0 = [0.01, 100.0, 0.61, 0.0245, 05.0, 09.44, 0.0110, 79.0, 0.0215, 1.0]
# hypothese 1.1: sensibility to interstitial insuline (r) ===> err : 0.00411
# p0 = [0.01, 100.0, 0.61, 0.0245, 05.0, 09.44, 0.0110, 79.0, 0.0215, 0.91]
# hypothese 1.2: disponibility of insuline for X(t) (p3) ==> err: 0.004105
# p0 = [0.01, 100.0, 0.61, 0.0224, 05.0, 09.44, 0.0110, 79.0, 0.0215, 1.0]
# hypothese 2: degradation insuline (n) ==> err : 0.00395
p0 = [0.01, 100.0, 0.61, 0.0245, 05.0, 9.93, 0.0110, 79.0, 0.0215, 1.0]
# hypothese 3: interstitial insuline degradation (p2) ==> err : 0.00398
# p0 = [0.01, 100.0, 0.67, 0.0245, 05.0, 09.44, 0.0110, 79.0, 0.0215, 1.0]
# hypothesis 4: γ (Insuline production acceleration) decreased ==> err = 0.00762
# p0 = [0.01, 100.0, 0.61, 0.0245, 05.0, 09.44, 0.0100, 79.0, 0.0215, 1.0]
# hypothesis 5: change p4 (stored insuline release rate) ==> err = 0.00638
# p0 = [0.01, 100.0, 0.61, 0.0245, 05.0, 09.44, 0.0110, 79.0, 0.0200, 1.0]
# hypothese 6: reponse Glucose threshold (h) ==> err: 0.00819
# p0 = [0.01, 100.0, 0.61, 0.0245, 05.0, 09.44, 0.0110, 85.0, 0.0215, 1.0]
########################################################################
# Simulation CD1 26 days
prob_param = ODEProblem(f_param!,u0,tspan,p0)
scd1 = solve(prob_param, alg_hints = [:stiff])
# Experimental results
glcexpCd1 = [75.7,133.3,184.5,196.8,188.6,167.4,131.2,110.9]
uppererror = [1.97,5.34,4.96,5.21,2.52,4.47,4.30,2.64]
lowererror = [1.97,5.34,4.96,5.21,2.52,4.47,4.30,2.64]
errs = [lowererror;uppererror]
res_tot = [scd1(ti) for ti in texp]
res = [ri[1] for ri in res_tot]
# Error computation
wls_err_Cd1 = weighted_leastsquare(glcexpCd1,res,uppererror)
print("CD1 wls = ", wls_err_Cd1, "\n")
ls_err_Cd1 = leastsquare(glcexpCd1,res)
# Plotting
plot!(scd1,vars=[(0,1)],label="Glucose(Cd1) simulations")
scatter!(texp,glcexpCd1,yerr = errs,marker = stroke(2, :green),
xlabel="time (min)", ylabel= "Concentration: mg/dL",
label="Cd1 exp results", legend=:top, markerstrokecolor = :auto)
# Parameters sets for the different hypothesis for the group CD2 at 26 Days
########################################################################
# Control parameter set ===> err: 0.00600
# p1 Gb p2 p3 Ib n γ h p4 r
# p0 = [0.01, 100.0, 0.61, 0.0245, 05.0, 09.44, 0.0110, 79.0, 0.0215, 1.0]
# hypothese 1.1: sensibility to interstitial insuline (r) ==> err: 0.00444
# p0 = [0.01, 100.0, 0.61, 0.0245, 05.0, 09.44, 0.0110, 79.0, 0.0215, 0.93]
# hypothese 1.2: disponibility of insuline for X(t) (p3) ==> err : 0.00435
# p0 = [0.01, 100.0, 0.61, 0.0230, 05.0, 09.44, 0.0110, 79.0, 0.0215, 1.0]
# hypothese 2: degradation insuline (n) ==> err : 0.00442
# p0 = [0.01, 100.0, 0.61, 0.0245, 05.0, 09.75, 0.0110, 79.0, 0.0215, 1.0]
# hypothese 3: interstitial insuline degradation (p2) ==> err: 0.00434
# p0 = [0.01, 100.0, 0.65, 0.0245, 05.0, 09.44, 0.0110, 79.0, 0.0215, 1.0]
# hypothesis 4: γ (Insuline production acceleration) decreased ==> err = 0.00584
# p0 = [0.01, 100.0, 0.61, 0.0245, 05.0, 09.44, 0.0107, 79.0, 0.0215, 1.0]
# hypothesis 5: change p4 (stored insuline release rate) ==> err = 0.00388
p0 = [0.01, 100.0, 0.61, 0.0245, 05.0, 09.44, 0.0110, 79.0, 0.0201, 1.0]
# hypothese 6: reponse Glucose threshold (h) ==> err: 0.0058
# p0 = [0.01, 100.0, 0.61, 0.0245, 05.0, 09.44, 0.0110, 81.0, 0.0215, 1.0]
##########################################################################
# Simulation Group CD2 26 days
prob_param = ODEProblem(f_param!,u0,tspan,p0)
scd2 = solve(prob_param, alg_hints = [:stiff])
# Experimental results
glcexpCd2 = [77.9,132,182.8,195,183,162.3,125.5,112.2]
uppererror = [1.6,7.1,7.7,7.3,5.7,3.8,3.9,4.2]
lowererror = [1.6,7.1,7.7,7.3,5.7,3.8,3.9,4.2]
errs = [lowererror;uppererror]
res_tot = [scd2(ti) for ti in texp]
res = [ri[1] for ri in res_tot]
# Error Computation
wls_err_Cd2 = weighted_leastsquare(glcexpCd2,res,uppererror)
print("CD2 wls = ", wls_err_Cd2, "\n")
ls_err_Cd2 = leastsquare(glcexpCd2,res)
# Plotting
plot!(scd2,vars=[(0,1)],label="Glucose (Cd2) simulations")
cur_colors = get_color_palette(:auto, plot_color(:white), 17)
scatter!(texp,glcexpCd2,yerr = errs,marker = stroke(2, cur_colors[5]),
xlabel="time (min)", ylabel= "Concentration: mg/dL",
label="Cd2 exp results", legend=:top, markerstrokecolor = :auto)
# Additionnal plot options
plot!(size=(1280,960),legendfontsize=15, xtickfont=font(13), ytickfont=font(13), guidefont=font(18))
# savefig("OGTT_26.pdf")