-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquery.py
97 lines (86 loc) · 2.88 KB
/
query.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from index import BuildIndex
import re, glob
class Query:
def __init__(self):
self.filenames = []
self.filenames = glob.glob('./Data/*/*.txt')
self.filenames += glob.glob('./Data/*.txt')
self.index = BuildIndex(self.filenames)
self.invertedIndex = self.index.totalIndex
self.regularIndex = self.index.regdex
def one_word_query(self, word):
pattern = re.compile('[\W_]+')
word = pattern.sub(' ',word)
if word in self.invertedIndex.keys():
return self.rankResults([filename for filename in self.invertedIndex[word].keys()], word)
else:
return []
def free_text_query(self, string):
pattern = re.compile('[\W_]+')
string = pattern.sub(' ',string)
result = []
for word in string.split():
result += self.one_word_query(word)
return self.rankResults(list(set(result)), string)
def phrase_query(self, string):
pattern = re.compile('[\W_]+')
string = pattern.sub(' ',string)
listOfLists, result = [],[]
for word in string.split():
listOfLists.append(self.one_word_query(word))
setted = set(listOfLists[0]).intersection(*listOfLists)
for filename in setted:
temp = []
for word in string.split():
temp.append(self.invertedIndex[word][filename][:])
for i in range(len(temp)):
for ind in range(len(temp[i])):
temp[i][ind] -= i
if set(temp[0]).intersection(*temp):
result.append(filename)
return self.rankResults(result, string)
def make_vectors(self, documents):
vecs = {}
for doc in documents:
docVec = [0]*len(self.index.getUniques())
for ind, term in enumerate(self.index.getUniques()):
docVec[ind] = self.index.generateScore(term, doc)
vecs[doc] = docVec
return vecs
def query_vec(self, query):
pattern = re.compile('[\W_]+')
query = pattern.sub(' ',query)
queryls = query.split()
queryVec = [0]*len(queryls)
index = 0
for ind, word in enumerate(queryls):
queryVec[index] = self.queryFreq(word, query)
index += 1
queryidf = [self.index.idf[word] for word in self.index.getUniques()]
magnitude = pow(sum(map(lambda x: x**2, queryVec)),.5)
freq = self.termfreq(self.index.getUniques(), query)
tf = [x/magnitude for x in freq]
final = [tf[i]*queryidf[i] for i in range(len(self.index.getUniques()))]
return final
def queryFreq(self, term, query):
count = 0
for word in query.split():
if word == term:
count += 1
return count
def termfreq(self, terms, query):
temp = [0]*len(terms)
for i,term in enumerate(terms):
temp[i] = self.queryFreq(term, query)
return temp
def dotProduct(self, doc1, doc2):
if len(doc1) != len(doc2):
return 0
return sum([x*y for x,y in zip(doc1, doc2)])
def rankResults(self, resultDocs, query):
vectors = self.make_vectors(resultDocs)
queryVec = self.query_vec(query)
results = [[self.dotProduct(vectors[result], queryVec), result] for result in resultDocs]
results.sort(key=lambda x: x[0])
results = [x[1] for x in results]
return results