-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_annual_production.py
117 lines (87 loc) · 3.63 KB
/
predict_annual_production.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import json
import pandas as pd
from sklearn.linear_model import LinearRegression
import numpy as np
import matplotlib.pyplot as plt
# Load JSON data
with open('json_data/annual_MIX.json', 'r') as file:
data = json.load(file)
# Extract data
records = data['data']
# Convert to DataFrame
df = pd.DataFrame(records)
# Convert relevant columns to appropriate data types
df['period'] = df['period'].astype(int)
df['consumption-for-eg-btu'] = pd.to_numeric(
df['consumption-for-eg-btu'], errors='coerce')
# Filter data by year (2001-2023)
df = df[(df['period'] >= 2010)]
# Conversion factor from MMBtu to Kwh
MMBtu_to_KWh = 293.07107 * 1_000_000
# Convert BTU to Kwh
df['energy_production_KWh'] = df['consumption-for-eg-btu'] * MMBtu_to_KWh
# Select relevant columns for analysis
result_df = df[['period', 'location', 'stateDescription',
'fueltypeid', 'energy_production_KWh']]
# Select relevant columns for analysis
result_df = df[['period', 'location', 'stateDescription',
'fueltypeid', 'energy_production_KWh']]
# Forecast function for energy production
def forecast_energy_production(data, start_year=2023, end_year=2025):
forecasts = []
# Group by state and fuel type
for (state, fuel), group in data.groupby(['stateDescription', 'fueltypeid']):
X = group['period'].values.reshape(-1, 1)
y = group['energy_production_KWh'].values
# Fit linear regression
model = LinearRegression().fit(X, y)
# Predict for future years
for year in range(start_year, end_year + 1):
prediction = model.predict(np.array([[year]]))[0]
forecasts.append({
'stateDescription': state,
'fueltypeid': fuel,
'period': year,
'predicted_energy_production_KWh': max(prediction, 0)
})
return pd.DataFrame(forecasts)
# Generate predictions for 2023-2025
predictions_df = forecast_energy_production(result_df)
# Save predictions to CSV
predictions_df.to_csv(
'predicted_data/predicted_energy_production_2023_2025.csv', index=False)
# Filter results for the year 2025
# pred_results_df = result_df[result_df['period'] == 2025]
# # Save the processed data to a CSV file
# pred_results_df.to_csv('annual_energy_production_KWh.csv', index=False)
# print("Conversion complete. Data saved to 'annual_energy_production_KWh.csv'.")
# Function to plot energy production over the years with predictions
def plot_energy_trend(state, energy_source):
# Filter data by state and energy source
filtered_df = result_df[(result_df['stateDescription'] == state) &
(result_df['fueltypeid'] == energy_source)]
# Prepare data for prediction
X = filtered_df['period'].values.reshape(-1, 1)
y = filtered_df['energy_production_KWh'].values
# Fit model
model = LinearRegression()
model.fit(X, y)
# Predict for 2023 to 2025
future_years = np.array([[2024], [2025]])
future_predictions = model.predict(future_years)
# Plotting
plt.figure(figsize=(10, 6))
plt.plot(filtered_df['period'], filtered_df['energy_production_KWh'],
marker='o', label='Historical Data')
plt.plot(future_years.flatten(), future_predictions, marker='x',
linestyle='--', color='red', label='Predictions (2023-2025)')
plt.xlabel('Year')
plt.ylabel('Energy Production (KWh)')
plt.title(f'Energy Production Trend for {state} - {energy_source}')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.savefig("predicted_data/New_york_NG.png")
if __name__ == '__main__':
# Example usage
plot_energy_trend('New York', "NG")