forked from jvdkwast/PCRasterQGIS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpcraster_transient_algorithm.py
213 lines (180 loc) · 8.31 KB
/
pcraster_transient_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# -*- coding: utf-8 -*-
"""
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
from qgis.PyQt.QtCore import QCoreApplication
from qgis.core import (QgsProcessing,
QgsProcessingException,
QgsProcessingAlgorithm,
QgsDataSourceUri,
QgsProcessingParameterRasterDestination,
QgsProcessingParameterNumber,
QgsProcessingParameterRasterLayer)
from qgis import processing
from pcraster import *
class PCRasterTransientAlgorithm(QgsProcessingAlgorithm):
"""
This is an example algorithm that takes a vector layer and
creates a new identical one.
It is meant to be used as an example of how to create your own
algorithms and explain methods and variables used to do it. An
algorithm like this will be available in all elements, and there
is not need for additional work.
All Processing algorithms should extend the QgsProcessingAlgorithm
class.
"""
# Constants used to refer to parameters and outputs. They will be
# used when calling the algorithm from another algorithm, or when
# calling from the QGIS console.
INPUT_ELEVATION = 'INPUT'
INPUT_RECHARGE = 'INPUT2'
INPUT_TRANSMISSIVITY = 'INPUT3'
INPUT_FLOWCONDITION = 'INPUT4'
INPUT_STORAGE = 'INPUT5'
INPUT_TIMESTEP = 'INPUT6'
INPUT_TOLERANCE = 'INPUT7'
OUTPUT_TRANSIENT = 'OUTPUT'
def tr(self, string):
"""
Returns a translatable string with the self.tr() function.
"""
return QCoreApplication.translate('Processing', string)
def createInstance(self):
return PCRasterTransientAlgorithm()
def name(self):
"""
Returns the algorithm name, used for identifying the algorithm. This
string should be fixed for the algorithm, and must not be localised.
The name should be unique within each provider. Names should contain
lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return 'transient'
def displayName(self):
"""
Returns the translated algorithm name, which should be used for any
user-visible display of the algorithm name.
"""
return self.tr('transient')
def group(self):
"""
Returns the name of the group this algorithm belongs to. This string
should be localised.
"""
return self.tr('PCRaster')
def groupId(self):
"""
Returns the unique ID of the group this algorithm belongs to. This
string should be fixed for the algorithm, and must not be localised.
The group id should be unique within each provider. Group id should
contain lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return 'pcraster'
def shortHelpString(self):
"""
Returns a localised short helper string for the algorithm. This string
should provide a basic description about what the algorithm does and the
parameters and outputs associated with it..
"""
return self.tr(
"""Simulates transient groundwater flow according to the implicit finite difference method.
<a href="https://pcraster.geo.uu.nl/pcraster/4.3.1/documentation/pcraster_manual/sphinx/op_transient.html">PCRaster documentation</a>
Parameters:
* <b>Input elevation raster</b> (required) - Scalar elevation raster
* <b>Input recharge raster</b> (required) - Scalar raster with recharge [L T-1]
* <b>Input transmissivity raster</b> (required) - Scalar raster transmissivity [L2 T-1]
* <b>Input flow condition raster</b> (required) - Nominal raster with values for inactive (0), active (1) or constant head (2)
* <b>Input storage coefficient raster</b> (required) - Scalar raster with storage coefficient [L3/L3]
* <b>Input time step value</b> (required) - Time step [T]
* <b>Input tolerance value</b> (required) - Value specifies the maximum difference between the current elevation and the new elevation
* <b>Output transient raster</b> (required) - Scalar raster with result
"""
)
def initAlgorithm(self, config=None):
"""
Here we define the inputs and output of the algorithm, along
with some other properties.
"""
self.addParameter(
QgsProcessingParameterRasterLayer(
self.INPUT_ELEVATION,
self.tr('Input Elevation Raster Layer')
)
)
self.addParameter(
QgsProcessingParameterRasterLayer(
self.INPUT_RECHARGE,
self.tr('Input Recharge Raster Layer')
)
)
self.addParameter(
QgsProcessingParameterRasterLayer(
self.INPUT_TRANSMISSIVITY,
self.tr('Input Transmissivity Raster Layer')
)
)
self.addParameter(
QgsProcessingParameterRasterLayer(
self.INPUT_FLOWCONDITION,
self.tr('Input Flow Condition Raster Layer')
)
)
self.addParameter(
QgsProcessingParameterNumber(
self.INPUT_STORAGE,
self.tr('Storage coefficient'),
defaultValue=0.5
)
)
self.addParameter(
QgsProcessingParameterNumber(
self.INPUT_TIMESTEP,
self.tr('Time step'),
defaultValue=10
)
)
self.addParameter(
QgsProcessingParameterNumber(
self.INPUT_TOLERANCE,
self.tr('Tolerance'),
defaultValue=10
)
)
self.addParameter(
QgsProcessingParameterRasterDestination(
self.OUTPUT_TRANSIENT,
self.tr('Output Transient Raster Layer')
)
)
def processAlgorithm(self, parameters, context, feedback):
"""
Here is where the processing itself takes place.
"""
input_elevation = self.parameterAsRasterLayer(parameters, self.INPUT_ELEVATION, context)
input_recharge = self.parameterAsRasterLayer(parameters, self.INPUT_RECHARGE, context)
input_transmissivity = self.parameterAsRasterLayer(parameters, self.INPUT_TRANSMISSIVITY, context)
input_flowcondition = self.parameterAsRasterLayer(parameters, self.INPUT_FLOWCONDITION, context)
input_storage = self.parameterAsRasterLayer(parameters, self.INPUT_STORAGE, context)
timestep = self.parameterAsDouble(parameters, self.INPUT_TIMESTEP, context)
tolerance = self.parameterAsDouble(parameters, self.INPUT_TOLERANCE, context)
output_transient = self.parameterAsRasterLayer(parameters, self.OUTPUT_TRANSIENT, context)
setclone(input_elevation.dataProvider().dataSourceUri())
elevation = readmap(input_elevation.dataProvider().dataSourceUri())
recharge = readmap(input_recharge.dataProvider().dataSourceUri())
transmissivity = readmap(input_transmissivity.dataProvider().dataSourceUri())
flowcondition = readmap(input_flowcondition.dataProvider().dataSourceUri())
storage = readmap(input_storage.dataProvider().dataSourceUri())
resulttransient = transient(elevation,recharge,transmissivity,flowcondition,storage,timestep,tolerance)
outputTransient = self.parameterAsOutputLayer(parameters, self.OUTPUT_TRANSIENT, context)
report(resulttransient,outputTransient)
results = {}
results[self.OUTPUT_TRANSIENT] = outputTransient
return results