-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwinequalityScikitLearn.py
179 lines (136 loc) · 5.95 KB
/
winequalityScikitLearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from dtreeviz.trees import dtreeviz # used for tree visualization
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics, tree
from sklearn.metrics import confusion_matrix, classification_report, multilabel_confusion_matrix
from sklearn.cluster import KMeans, MeanShift
from sklearn.mixture import GaussianMixture
from sklearn.decomposition import PCA, KernelPCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
def linearRegression():
# just to fit the decision tree in a picture
model = RandomForestRegressor(max_depth=3)
model.fit(X_train, Y_train)
Y_predict = model.predict(X_test)
mse = metrics.mean_squared_error(Y_test, Y_predict)
print("\tMean Squared Error:", mse)
mae = metrics.mean_absolute_error(Y_test, Y_predict)
print("\tMean Absolute Error:", mae)
mape = metrics.mean_absolute_percentage_error(Y_test, Y_predict)
print("\tMean Absolute Percentage Error:", mape)
mdae = metrics.median_absolute_error(Y_test, Y_predict)
print("\tMedian Absolute Error:", mdae)
plt.figure(figsize=(20, 20))
_ = tree.plot_tree(model.estimators_[
0], feature_names=x.columns, filled=True)
plt.show()
viz = dtreeviz(model.estimators_[0], X_train, y,
feature_names=X_train.columns, target_name="Target")
viz.view()
def classification():
model = RandomForestClassifier(max_depth=3)
model.fit(X_train, Y_train)
Y_predict = model.predict(X_test)
cm = metrics.confusion_matrix(Y_test, Y_predict)
print("Confusion Matrix:")
print(cm)
prfs = metrics.precision_recall_fscore_support(Y_test, Y_predict)
print("Precision Recall F-score Support:")
print(prfs)
accuracy = metrics.accuracy_score(Y_test, Y_predict)
print("Accuracy:")
print(accuracy)
cr = metrics.classification_report(Y_test, Y_predict)
print("Classification Report:")
print(cr)
plt.figure(figsize=(20, 20))
_ = tree.plot_tree(model.estimators_[
0], feature_names=x.columns, filled=True)
plt.show()
viz = dtreeviz(model.estimators_[1], X_train, y,
feature_names=X_train.columns, target_name="Target")
viz.view()
def clustering(showPlots):
# function that returns a figure for each feature clustering by quality
y_pred_kmeans = KMeans(n_clusters=10, random_state=1).fit_predict(x)
y_pred_meanshift = MeanShift().fit_predict(x)
y_pred_gaussianmixture = GaussianMixture(n_components=10).fit_predict(x)
ssKMeans = metrics.silhouette_score(x, y_pred_kmeans)
ssMeanShift = metrics.silhouette_score(x, y_pred_meanshift)
ssGaussianMixture = metrics.silhouette_score(x, y_pred_gaussianmixture)
print("Shilhouette Score using KMeans cluster is: ", ssKMeans)
print("Shilhouette Score using MeanShifth cluster is: ", ssMeanShift)
print("Shilhouette Score using GaussianMixture cluster is: ", ssGaussianMixture)
if showPlots:
for col in headers[:-1]:
fig, axs = plt.subplots(2, 2)
fig.suptitle("clustering of " + col +
" and " + headers[-1], fontsize=16)
axs[0, 0].scatter(x[headers[headers.index(col)]], y, c=y)
axs[0, 0].set_title("Groundtruth Data")
axs[0, 0].set_xlabel(col)
axs[0, 0].set_ylabel(headers[-1])
axs[0, 1].scatter(x[headers[headers.index(col)]],
y, c=y_pred_kmeans)
axs[0, 1].set_title("KMeans")
axs[0, 1].set_xlabel(col)
axs[0, 1].set_ylabel(headers[-1])
axs[1, 0].scatter(x[headers[headers.index(col)]],
y, c=y_pred_meanshift)
axs[1, 0].set_title("MeanShift")
axs[1, 0].set_xlabel(col)
axs[1, 0].set_ylabel(headers[-1])
axs[1, 1].scatter(x[headers[headers.index(col)]],
y, c=y_pred_gaussianmixture)
axs[1, 1].set_title("Gaussian Mixture")
axs[1, 1].set_xlabel(col)
axs[1, 1].set_ylabel(headers[-1])
plt.show()
plt.close(fig)
def dimensionalityReduction():
fig = plt.figure()
ax = fig.add_subplot(2, 2, 1, projection='3d')
ax.scatter(x[headers[0]], x[headers[1]], x[headers[2]], c=y)
ax.set_xlabel(headers[0])
ax.set_ylabel(headers[1])
ax.set_zlabel(headers[2])
pca = PCA(n_components=2)
X_r = pca.fit(x).transform(x)
# Percentage of variance explained for each components
print("PCA explained variance ratio (first two components): {}".format(
str(pca.explained_variance_ratio_)))
ax = fig.add_subplot(2, 2, 2)
ax.scatter(X_r[:, 0], X_r[:, 0], c=y, alpha=0.8)
ax.set_title("PCA of wine dataset")
kpca = KernelPCA(n_components=2, kernel='rbf')
X_kpca = kpca.fit(x).transform(x)
ax = fig.add_subplot(2, 2, 3)
ax.scatter(X_kpca[:, 0], X_kpca[:, 0], c=y, alpha=0.8)
ax.set_title("kPCA of wine dataset")
lda = LinearDiscriminantAnalysis(n_components=2)
X_r2 = lda.fit(x, y).transform(x)
# Percentage of variance explained for each components
print("LDA explained variance ratio (first two components): {}".format(
str(lda.explained_variance_ratio_)))
ax = fig.add_subplot(2, 2, 4)
ax.scatter(X_r2[:, 0], X_r2[:, 0], c=y, alpha=0.8)
ax.set_title("LDA of wine dataset")
plt.show()
if __name__ == '__main__':
# read file
filename = "winequality-red.csv"
df = pd.read_csv(filename, delimiter=';')
headers = list(df.columns)
# assign columns to variables
x = df[headers[:-1]]
y = df[headers[-1]]
X_train, X_test, Y_train, Y_test = train_test_split(
x, y, test_size=0.2, random_state=1)
linearRegression()
classification()
clustering(showPlots=True)
dimensionalityReduction()