-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_bionlp_search.py
182 lines (142 loc) · 5.01 KB
/
run_bionlp_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from torch.optim import AdamW
from torch.utils.data import DataLoader
from datasets import load_dataset
from transformers import (
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorForTokenClassification,
TrainingArguments,
Trainer,
get_linear_schedule_with_warmup,
)
from bionlp import compute_metrics,label2id,id2label,label_list
import torch
import numpy as np
from betty.engine import Engine
from betty.configs import Config, EngineConfig
from betty.problems import ImplicitProblem
class Architecture(torch.nn.Module):
def __init__(self, r_search, n_layer):
super(Architecture, self).__init__()
self.alphas=torch.nn.Parameter(torch.zeros(n_layer,r_search*2))
def forward(self):
return self.alphas
class Arch(ImplicitProblem):
def training_step(self, batch):
alphas = self.forward()
loss = self.roberta.module(alphas, **batch)
return loss
class Roberta(ImplicitProblem):
def training_step(self, batch):
alphas = self.arch()
loss = self.module(alphas, **batch).loss
return loss
class NASEngine(Engine):
@torch.no_grad()
def validation(self):
alphas_q,alphas_v=self.arch.module.alphas[:,:lora_dim],self.arch.module.alphas[:,lora_dim:]
r_list_q=[int(sum(torch.nn.functional.softmax(alpha,dim=-1)>=1/lora_dim)) for alpha in alphas_q]
r_list_v=[int(sum(torch.nn.functional.softmax(alpha,dim=-1)>=1/lora_dim)) for alpha in alphas_v]
return {"q": str(r_list_q),'v':str(r_list_v)}
model_checkpoint = "roberta-base"
num_layers=12
lora_dim=8
lora_alpha=16
lr = 1e-3
batch_size = 16
num_epochs = 50
device='cuda'
bionlp = load_dataset("tner/bionlp2004")
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, add_prefix_space=True)
def tokenize_and_align_labels(examples):
tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True)
labels = []
for i, label in enumerate(examples[f"tags"]):
word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
label_ids = []
for word_idx in word_ids:
if word_idx is None:
label_ids.append(-100)
elif word_idx != previous_word_idx:
label_ids.append(label[word_idx])
else:
label_ids.append(-100)
previous_word_idx = word_idx
labels.append(label_ids)
tokenized_inputs["labels"] = labels
return tokenized_inputs
tokenized_bionlp = bionlp.map(tokenize_and_align_labels, batched=True)
data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
def collate_fn(examples):
return tokenizer.pad(examples, padding="longest", return_tensors="pt",)
train_dataset=tokenized_bionlp['train'].train_test_split(test_size=0.3)
train_dataset=train_dataset.remove_columns(["tokens",'tags'])
train_split=train_dataset['train']
search_split=train_dataset['test']
# Instantiate dataloaders.
train_dataloader = DataLoader(train_split, shuffle=True, collate_fn=data_collator, batch_size=batch_size,drop_last=True)
search_dataloader = DataLoader(search_split, shuffle=True, collate_fn=data_collator, batch_size=batch_size,drop_last=True)
model = AutoModelForTokenClassification.from_pretrained(
model_checkpoint, num_labels=11, id2label=id2label, label2id=label2id,
apply_lora=True,
lora_alpha=lora_alpha,
lora_r=lora_dim,
)
lora_parameters =[
{
"params": [p for n, p in model.named_parameters() if 'lora_' in n], # if not any(nd in n for nd in no_decay)],
}]
optimizer = AdamW(params=lora_parameters, lr=lr)
arch_net=Architecture(lora_dim,num_layers)
arch_optimizer = torch.optim.Adam(
arch_net.parameters(),
lr=3e-4,
betas=(0.5, 0.999),
weight_decay=1e-3,
)
# Instantiate scheduler
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=0.06 * (len(train_dataloader) * num_epochs),
num_training_steps=(len(train_dataloader) * num_epochs),
)
outer_config = Config(retain_graph=True)
unroll_steps=1
inner_config = Config(type="darts", unroll_steps=unroll_steps)
outer = Arch(
name="arch",
module=arch_net,
optimizer=arch_optimizer,
train_data_loader=search_dataloader,
config=outer_config,
)
inner = Roberta(
name="roberta",
module=model,
optimizer=optimizer,
train_data_loader=train_dataloader,
config=inner_config,
)
problems = [outer, inner]
l2u = {inner: [outer]}
u2l = {outer: [inner]}
dependencies = {"l2u": l2u, "u2l": u2l}
train_portion=1.0
report_freq = 100
num_train = len(train_split) # 50000
indices = list(range(num_train))
split = int(np.floor(train_portion * num_train))
train_iters = int(
num_epochs
* (num_train * train_portion // batch_size + 1)
* unroll_steps
)
print(train_iters,num_train)
engine_config = EngineConfig(
valid_step=report_freq * unroll_steps,
train_iters=train_iters,
roll_back=True,
)
engine = NASEngine(config=engine_config, problems=problems, dependencies=dependencies)
engine.run()