-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.py
57 lines (44 loc) · 1.56 KB
/
index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import cv2
import sys
from filter import drawCircle, drawRectangle
kernel_ellipse = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
kernel_rect = cv2.getStructuringElement(cv2.MORPH_RECT,(5,5))
kernel_cross = cv2.getStructuringElement(cv2.MORPH_CROSS,(5,5))
# these values are hardcoded because
# present the best edge validation
# for the current dataset
CANNY_MIN = 45
CANNY_MAX = 70
# this method is used to define the
# valid holes of the image
# wich we use to determine if
# the final position of the
# rat is inside a hole
def find_valid_circles(image):
# apply a simple blur
blur = cv2.GaussianBlur(image,(5,5),0)
# this part is used to remove all noise in the image
dilation = cv2.dilate(blur,kernel_ellipse,iterations = 1)
# cv2.imshow('dilation', dilation)
erosion = cv2.erode(dilation,kernel_ellipse,iterations = 2)
# cv2.imshow('erosion', erosion)
canny = cv2.Canny(erosion,CANNY_MIN, CANNY_MAX)
return canny
def main(argv):
cap = cv2.VideoCapture('dataset/barnes-5-6/MOV03631.avi')
while(1):
ret, frame = cap.read()
laplacian = cv2.Laplacian(frame, cv2.CV_64F)
cv2.imshow('laplacian', laplacian)
circles = find_valid_circles(frame)
(_,cnts,hierarchy) = cv2.findContours(circles.copy(), cv2.FILLED, cv2.CHAIN_APPROX_SIMPLE)
draw = drawCircle(circles, cnts)
cv2.imshow('circles', draw)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
main(sys.argv)