-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path23_template_matching.py
44 lines (34 loc) · 1.18 KB
/
23_template_matching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('scenic_background.jpg', 0)
img2 = img.copy()
template = cv2.imread('scenic_background_cut.jpg', 0)
w, h = template.shape[::-1]
# all 6 comparison methods
methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',
'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
for meth in methods:
img = img2.copy()
method = eval(meth)
# apply template matching
res = cv2.matchTemplate(img, template, method)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
# if the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum
if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
top_left = min_loc
else:
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
# draw bounding box
cv2.rectangle(img, top_left, bottom_right, (255, 0, 0), 2)
# show images
plt.subplot(121)
plt.imshow(res, cmap='gray')
plt.title('Matching Result')
plt.xticks([]), plt.yticks([])
plt.subplot(122)
plt.imshow(img, cmap='gray')
plt.title('Detected Point')
plt.xticks([]), plt.yticks([])
plt.show()