-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path25_image_gradients.py
48 lines (40 loc) · 987 Bytes
/
25_image_gradients.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('sudoku.png',0)
laplacian = cv2.Laplacian(img, cv2.CV_64F)
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=5)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=5)
'''
# threshold negative values to 0
laplacian[laplacian < 0] = 0
sobelx[sobelx < 0] = 0
sobely[sobely < 0] = 0
'''
'''
# invert the mask
laplacian_inv = cv2.bitwise_not(laplacian)
sobelx_inv = cv2.bitwise_not(sobelx)
sobely_inv = cv2.bitwise_not(sobely)
'''
# original
plt.subplot(2, 2, 1)
plt.imshow(img, cmap='gray')
plt.title('original')
plt.xticks([]), plt.yticks([])
# laplacian
plt.subplot(2, 2, 2)
plt.imshow(laplacian, cmap='gray')
plt.title('laplacian')
plt.xticks([]), plt.yticks([])
# sobel x
plt.subplot(2, 2, 3)
plt.imshow(sobelx, cmap='gray')
plt.title('sobelx')
plt.xticks([]), plt.yticks([])
# sobel y
plt.subplot(2, 2, 4)
plt.imshow(sobely, cmap='gray')
plt.title('sobely')
plt.xticks([]), plt.yticks([])
plt.show()