-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path37_flann_sift.py
61 lines (46 loc) · 1.64 KB
/
37_flann_sift.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
####################
# IMPORTANT: RUN USING 'python2.7' NOT 'python'
####################
import cv2
# GOOD
img1 = cv2.imread('cereal_frostedflakes.jpg', 0)
img2 = cv2.imread('cereal_frostedflakes_more.jpg',0)
# OKAY
#img1 = cv2.imread('cereal_honeybunches.png', 0)
#img2 = cv2.imread('cereal_brands.jpg', 0)
# BAD
#img1 = cv2.imread('cereal_frootloops.jpeg', 0)
#img2 = cv2.imread('cereal_brands.jpg', 0)
# initiate ORB detector
sift = cv2.xfeatures2d.SIFT_create()
# find keypoints nad descriptors with ORB
kp1, desc1 = sift.detectAndCompute(img1, None)
kp2, desc2 = sift.detectAndCompute(img2, None)
# FLANN parameters
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50) # or pass empty dictionary
# create flann matcher object
flann = cv2.FlannBasedMatcher(index_params, search_params)
# get the k best matches in two images
# matches objects have: distance, train descriptor index,
# query descriptor index, train image index
matches = flann.knnMatch(desc1, desc2, k=2)
# draw only good matches, so create mask
matchesMask = [[0,0] for i in xrange(len(matches))]
# apply ratio test
for i, (m,n) in enumerate(matches):
if m.distance < 0.75*n.distance:
matchesMask[i] = [1,0]
# drawing parameters
draw_params = dict(matchColor = (0,255,0),
singlePointColor = (255, 0, 0),
matchesMask = matchesMask,
flags = 0)
# draw first 10 matches
img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, matches, None, **draw_params)
# show image
cv2.imshow('sift matches w/ flann matcher', img3)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.waitKey(1)