-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path38_flann_sift_ransac.py
77 lines (59 loc) · 2.2 KB
/
38_flann_sift_ransac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
####################
# IMPORTANT: RUN USING 'python2.7' NOT 'python'
####################
import cv2
import numpy as np
# GOOD
#img1 = cv2.imread('cereal_frostedflakes.jpg', 0)
#img2 = cv2.imread('cereal_frostedflakes_more.jpg',0)
# VERY GOOD
img1 = cv2.imread('cereal_honeybunches.png', 0)
img2 = cv2.imread('cereal_brands.jpg', 0)
# ERROR
#img1 = cv2.imread('cereal_frootloops.jpeg', 0)
#img2 = cv2.imread('cereal_brands.jpg', 0)
# initiate ORB detector
sift = cv2.xfeatures2d.SIFT_create()
# find keypoints nad descriptors with ORB
kp1, desc1 = sift.detectAndCompute(img1, None)
kp2, desc2 = sift.detectAndCompute(img2, None)
# FLANN parameters
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50) # or pass empty dictionary
# create flann matcher object
flann = cv2.FlannBasedMatcher(index_params, search_params)
# get the k best matches in two images
# matches objects have: distance, train descriptor index,
# query descriptor index, train image index
matches = flann.knnMatch(desc1, desc2, k=2)
# apply ratio test
good = []
for m, n in matches:
if m.distance < 0.75*n.distance:
good.append(m)
MIN_MATCH_COUNT = 10
if len(good) > MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp1[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
matchesMask = mask.ravel().tolist()
h, w = img1.shape
pts = np.float32([ [0,0], [0,h-1], [w-1,h-1], [w-1,0] ]).reshape(-1,1,2)
dst = cv2.perspectiveTransform(pts, M)
img2 = cv2.polylines(img2, [np.int32(dst)], True, 255, 3, cv2.LINE_AA)
else:
print('Not enough matches were found - {}/{}'.format(len(good), MIN_MATCH_COUNT))
matchesMask = none
# drawing parameters
draw_params = dict(matchColor = (0,255,0),
singlePointColor = None,
matchesMask = matchesMask,
flags = 2)
# draw first 10 matches
img3 = cv2.drawMatches(img1, kp1, img2, kp2, good, None, **draw_params)
# show image
cv2.imshow('sift matches w/ flann matcher + RANSAC', img3)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.waitKey(1)