-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
58 lines (45 loc) · 1.77 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
CS224N 2019-20: Homework 5
"""
import torch
import torch.nn as nn
class CNN(nn.Module):
def __init__(self, char_embed_size, word_embed_size, kernel_size=5, padding=1):
""" Init 1-D Conv Network.
@param kernel_size (int): Kernel size for 1-D convolutions
@param padding (int): Padding size
"""
super(CNN, self).__init__()
self.kernel_size = kernel_size
self.padding = padding
self.char_embed_size = char_embed_size
self.word_embed_size = word_embed_size
# default values
self.conv = None
self.maxpool = None
self.relu = None
"""
TODO - Initialize the following variables:
self.conv (Conv1d Layer)
self.maxpool (MaxPool1d Layer)
self.relu (ReLU function)
"""
self.conv = nn.Conv1d(in_channels=self.char_embed_size, out_channels=self.word_embed_size,
kernel_size=self.kernel_size, padding=self.padding)
# self.maxpool = nn.MaxPool1d(kernel_size=)
self.relu = nn.ReLU()
def forward(self, X_reshaped: torch.Tensor):
"""
Take a mini-batch input from the padded character indices and
return the output after passing the input through a Conv1d network
@param X_reshaped (Tensor): tensor of shape (b, e_char, m_word)
b = batch size
@returns X_conv_out (Tensor): tensor of shape (b, e_char)
this is sent to the highway network
"""
X_conv = self.conv(X_reshaped)
# X_conv_out = self.maxpool(self.relu(X_conv))
X_conv_out = torch.max(self.relu(X_conv), dim=2)[0]
return X_conv_out