-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRedBlackTree.java
272 lines (237 loc) · 8.53 KB
/
RedBlackTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
public class RedBlackTree {
private Node root;
private static final boolean RED = true;
private static final boolean BLACK = false;
public RedBlackTree() {
}
private boolean isRed(Node x) {
if (x == null) return false;
return x.color == RED;
}
// check if tree is empty
public boolean isEmpty() {
return root == null;
}
// returns the building metadata associated with the key i.e building no
public Building get(int key) {
return get(root, key);
}
// value associated with the given key in subtree rooted at x; null if no such key
private Building get(Node x, int key) {
while (x != null) {
int cmp = Integer.compare(key, x.key);
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;
}
return null;
}
// check if red black tree contains building with build no: key
public boolean contains(int key) {
return get(key) != null;
}
// Insert building into red black tree with building no as key; updates building if key already exists
public void put(int key, Building val) {
if (val == null) {
delete(key);
return;
}
root = put(root, key, val);
root.color = BLACK;
assert check();
}
// insert the key-value pair in the subtree rooted at h
private Node put(Node h, int key, Building val) {
if (h == null) return new Node(key, val, RED);
int cmp = Integer.compare(key, h.key);
if (cmp < 0) h.left = put(h.left, key, val);
else if (cmp > 0) h.right = put(h.right, key, val);
else h.val = val;
// fix-up any right-leaning links
if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
if (isRed(h.left) && isRed(h.right)) flipColors(h);
return h;
}
// deletes building with specified key i.e building no
public void delete(int key) {
if (!contains(key)) return;
// if both children of root are black, set root to red
if (!isRed(root.left) && !isRed(root.right))
root.color = RED;
root = delete(root, key);
if (!isEmpty()) root.color = BLACK;
assert check();
}
// delete the node with the given key rooted at h
private Node delete(Node h, int key) {
assert get(h, key) != null;
if (key < h.key) {
if (!isRed(h.left) && !isRed(h.left.left))
h = moveRedLeft(h);
h.left = delete(h.left, key);
} else {
if (isRed(h.left))
h = rotateRight(h);
if (key == h.key && (h.right == null))
return null;
if (!isRed(h.right) && !isRed(h.right.left))
h = moveRedRight(h);
if (key == h.key) {
Node x = min(h.right);
h.key = x.key;
h.val = x.val;
h.right = deleteMin(h.right);
} else h.right = delete(h.right, key);
}
return balance(h);
}
// delete the node with the minimum key rooted at h
private Node deleteMin(Node h) {
if (h.left == null)
return null;
if (!isRed(h.left) && !isRed(h.left.left))
h = moveRedLeft(h);
h.left = deleteMin(h.left);
return balance(h);
}
// make left leaning link lean to the right
private Node rotateRight(Node h) {
assert (h != null) && isRed(h.left);
Node x = h.left;
h.left = x.right;
x.right = h;
x.color = x.right.color;
x.right.color = RED;
return x;
}
// make right leaning link lean to the left
private Node rotateLeft(Node h) {
assert (h != null) && isRed(h.right);
Node x = h.right;
h.right = x.left;
x.left = h;
x.color = x.left.color;
x.left.color = RED;
return x;
}
// flip the colors of a node and its two children
private void flipColors(Node h) {
assert (h != null) && (h.left != null) && (h.right != null);
assert (!isRed(h) && isRed(h.left) && isRed(h.right))
|| (isRed(h) && !isRed(h.left) && !isRed(h.right));
h.color = !h.color;
h.left.color = !h.left.color;
h.right.color = !h.right.color;
}
// Assuming that h is red and both h.left and h.left.left
// are black, make h.left or one of its children red.
private Node moveRedLeft(Node h) {
assert (h != null);
assert isRed(h) && !isRed(h.left) && !isRed(h.left.left);
flipColors(h);
if (isRed(h.right.left)) {
h.right = rotateRight(h.right);
h = rotateLeft(h);
flipColors(h);
}
return h;
}
// Assuming that h is red and both h.right and h.right.left
// are black, make h.right or one of its children red.
private Node moveRedRight(Node h) {
assert (h != null);
assert isRed(h) && !isRed(h.right) && !isRed(h.right.left);
flipColors(h);
if (isRed(h.left.left)) {
h = rotateRight(h);
flipColors(h);
}
return h;
}
// maintain red black tree invariant property
private Node balance(Node h) {
assert (h != null);
if (isRed(h.right)) h = rotateLeft(h);
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
if (isRed(h.left) && isRed(h.right)) flipColors(h);
return h;
}
// smallest key in subtree rooted at x
private Node min(Node x) {
assert x != null;
if (x.left == null) return x;
else return min(x.left);
}
// largest key in subtree rooted at x
private Node max(Node x) {
assert x != null;
if (x.right == null) return x;
else return max(x.right);
}
// check if bst and red black invariants have been maintained
private boolean check() {
return isBST() && isBalanced();
}
// check whether binary tree satisfies symmetric order
private boolean isBST() {
return isBST(root, 0, 0);
}
private boolean isBST(Node x, int min, int max) {
if (x == null) return true;
if (min != 0 && x.key <= min) return false;
if (max != 0 && x.key >= max) return false;
return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
}
// check if all paths from root to leaf have same no of black links
private boolean isBalanced() {
int black = 0; // number of black links on path from root to min
Node x = root;
while (x != null) {
if (!isRed(x)) black++;
x = x.left;
}
return isBalanced(root, black);
}
private boolean isBalanced(Node x, int black) {
if (x == null) return black == 0;
if (!isRed(x)) black--;
return isBalanced(x.left, black) && isBalanced(x.right, black);
}
//print a particular node(building)
public void print(int key) {
Building val = get(key);
if (val == null)
System.out.println("(0,0,0)"); // output if key doesn't exist
else
System.out.println("(" + val.getBuildingNo() + "," + val.getExecutedTime() + "," + val.getTotalTime() + ")");
}
//traverse only those subtrees that have keys(building no) in the range of low and hi and print building
private void print(Node x, int low, int hi) {
if (x == null)
return;
// skip left subtree traversal if key is lesser than low
if (x.key > low)
print(x.left, low, hi);
if (x.key >= low && x.key <= hi) {
Building val = x.val;
// check for max element in left subtree is in the given range and print ','
if (x.left != null && max(x.left).key >= low)
System.out.print(",");
System.out.print("(" + val.getBuildingNo() + "," + val.getExecutedTime() + "," + val.getTotalTime() + ")");
// check for min element in right subtree is in the given range and print ','
if (x.right != null && min(x.right).key <= hi)
System.out.print(",");
}
// skip right subtree traversal if key is higher than hi
if (x.key < hi)
print(x.right, low, hi);
}
//prints all nodes(buildings) in the range of low and hi
public void print(int low, int hi) {
if (root == null)
System.out.print("(0,0,0)");
else
print(root, low, hi);
}
}