-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcallbacks.py
137 lines (106 loc) · 4.18 KB
/
callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# -*- coding: utf-8 -*-
from __future__ import print_function
import numpy as np
import os
import keras.callbacks
try:
import cPickle as pickle
except:
import pickle
import csv
from collections import deque
from collections import OrderedDict
from collections import Iterable
class BatchLogger(keras.callbacks.CSVLogger):
def __init__(self, file_path):
super().__init__(file_path)
self.on_epoch_end = keras.callbacks.Callback.on_epoch_end
dst_dir = os.path.dirname(file_path)
if dst_dir is not '':
os.makedirs(dst_dir, exist_ok=True)
def on_batch_end(self, batch, logs=None):
def handle_value(k):
is_zero_dim_ndarray = isinstance(k, np.ndarray) and k.ndim == 0
if isinstance(k, Iterable) and not is_zero_dim_ndarray:
return '"[%s]"' % (', '.join(map(str, k)))
else:
return k
if not self.writer:
self.keys = sorted(logs.keys())
class CustomDialect(csv.excel):
delimiter = self.sep
self.writer = csv.DictWriter(self.csv_file,
fieldnames=['batch'] + self.keys, dialect=CustomDialect)
if self.append_header:
self.writer.writeheader()
row_dict = OrderedDict({'batch': batch})
row_dict.update((key, handle_value(logs[key])) for key in self.keys)
self.writer.writerow(row_dict)
self.csv_file.flush()
class ModelSaver(keras.callbacks.ModelCheckpoint):
def __init__(self, file_path, verbose=0, save_freq=1):
super().__init__(file_path, verbose=verbose)
self.save_freq = save_freq
dst_dir = os.path.dirname(file_path)
if dst_dir is not '':
os.makedirs(dst_dir, exist_ok=True)
def on_epoch_end(self, epoch, logs=None):
if epoch % self.save_freq == 0:
super().on_epoch_end(epoch, logs=logs)
# TODO segmentation用に作る
class Visualizer(keras.callbacks.Callback):
def __init__(self, x):
super().__init__()
self.x = x
def on_epoch_end(self, epoch, logs=None):
predict = self.model.predict(self.x)
print(predict.shape)
def test():
'''Trains a simple deep NN on the MNIST dataset.
Gets to 98.40% test accuracy after 20 epochs
(there is *a lot* of margin for parameter tuning).
2 seconds per epoch on a K520 GPU.
'''
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop
batch_size = 128
num_classes = 10
epochs = 20
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))
model.summary()
callbacks = [Visualizer(x=x_test)]
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy'])
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test),
callbacks=callbacks)
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
if __name__ == "__main__":
test()