-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample.txt
75 lines (66 loc) · 7.15 KB
/
sample.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
Listing of Zernike Standard Coefficient Data
File : C:\Users\zemax\Desktop\Sashank\test2.zmx
Title: Lens has no title.
Date : 6/7/2019
Note that RMS (to chief) is the RMS of the OPD after subtracting out piston.
The RMS (to centroid) is the RMS after subtracting out both piston and tilt.
The RMS (to centroid) is most physically significant and is generally what
is meant by 'the RMS'. Although OpticStudio uses the term 'centroid' for brevity,
the reference point is not the diffraction intensity centroid, but the reference
point which minimizes the variance of the wavefront.
Using Zernike Standard polynomials.
OPD referenced to chief ray.
Surface : Image
Field : 0.0000, 0.0000 (deg)
Wavelength : 0.2100 µm
Peak to Valley (to chief) : 0.46556071 waves
Peak to Valley (to centroid) : 0.46555990 waves
From integration of the rays:
RMS (to chief) : 0.13023438 waves
RMS (to centroid) : 0.13023436 waves
Variance : 0.01696099 waves squared
Strehl Ratio (Est) : 0.51191687
From integration of the fitted coefficients:
RMS (to chief) : 0.13101692 waves
RMS (to centroid) : 0.13101691 waves
Variance : 0.01716543 waves squared
Strehl Ratio (Est) : 0.50780179
RMS fit error : 0.00000000 waves
Maximum fit error : 0.00000001 waves
Z 1 -0.22666881 : 1
Z 2 -0.00005386 : 4^(1/2) (p) * COS (A)
Z 3 -0.00000116 : 4^(1/2) (p) * SIN (A)
Z 4 -0.13093099 : 3^(1/2) (2p^2 - 1)
Z 5 0.00012560 : 6^(1/2) (p^2) * SIN (2A)
Z 6 0.00474120 : 6^(1/2) (p^2) * COS (2A)
Z 7 -0.00000838 : 8^(1/2) (3p^3 - 2p) * SIN (A)
Z 8 -0.00001904 : 8^(1/2) (3p^3 - 2p) * COS (A)
Z 9 0.00009230 : 8^(1/2) (p^3) * SIN (3A)
Z 10 -0.00000006 : 8^(1/2) (p^3) * COS (3A)
Z 11 -0.00004957 : 5^(1/2) (6p^4 - 6p^2 + 1)
Z 12 0.00002749 : 10^(1/2) (4p^4 - 3p^2) * COS (2A)
Z 13 0.00000000 : 10^(1/2) (4p^4 - 3p^2) * SIN (2A)
Z 14 0.00000026 : 10^(1/2) (p^4) * COS (4A)
Z 15 0.00000000 : 10^(1/2) (p^4) * SIN (4A)
Z 16 0.00000000 : 12^(1/2) (10p^5 - 12p^3 + 3p) * COS (A)
Z 17 -0.00000434 : 12^(1/2) (10p^5 - 12p^3 + 3p) * SIN (A)
Z 18 0.00000000 : 12^(1/2) (5p^5 - 4p^3) * COS (3A)
Z 19 -0.00000008 : 12^(1/2) (5p^5 - 4p^3) * SIN (3A)
Z 20 0.00000000 : 12^(1/2) (p^5) * COS (5A)
Z 21 0.00000000 : 12^(1/2) (p^5) * SIN (5A)
Z 22 -0.00000020 : 7^(1/2) (20p^6 - 30p^4 + 12p^2 - 1)
Z 23 0.00000000 : 14^(1/2) (15p^6 - 20p^4 + 6p^2) * SIN (2A)
Z 24 -0.00000002 : 14^(1/2) (15p^6 - 20p^4 + 6p^2) * COS (2A)
Z 25 0.00000000 : 14^(1/2) (6p^6 - 5p^4) * SIN (4A)
Z 26 0.00000000 : 14^(1/2) (6p^6 - 5p^4) * COS (4A)
Z 27 0.00000000 : 14^(1/2) (p^6) * SIN (6A)
Z 28 0.00000000 : 14^(1/2) (p^6) * COS (6A)
Z 29 0.00000000 : 16^(1/2) (35p^7 - 60p^5 + 30p^3 - 4p) * SIN (A)
Z 30 0.00000000 : 16^(1/2) (35p^7 - 60p^5 + 30p^3 - 4p) * COS (A)
Z 31 0.00000000 : 16^(1/2) (21p^7 - 30p^5 + 10p^3) * SIN (3A)
Z 32 0.00000000 : 16^(1/2) (21p^7 - 30p^5 + 10p^3) * COS (3A)
Z 33 0.00000000 : 16^(1/2) (7p^7 - 6p^5) * SIN (5A)
Z 34 0.00000000 : 16^(1/2) (7p^7 - 6p^5) * COS (5A)
Z 35 0.00000000 : 16^(1/2) (p^7) * SIN (7A)
Z 36 0.00000000 : 16^(1/2) (p^7) * COS (7A)
Z 37 0.00000000 : 9^(1/2) (70p^8 - 140p^6 + 90p^4 - 20p^2 + 1)