-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
58 lines (44 loc) · 1.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import sys
import torch
from torch import nn
from torchvision import transforms, datasets
from torch.optim.lr_scheduler import ExponentialLR
import aleatoric, epistemic, combined, neural_net
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=256, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=256, shuffle=True)
kind = sys.argv[1]
if kind == 'epistemic':
model = epistemic
elif kind == 'aleatoric':
model = aleatoric
elif kind == 'combined':
model = combined
else:
print ('kind can be epistemic, aleatoric or combined')
exit()
net = model.Net(28*28, 10, 1024, 2)
net.apply(neural_net.init_weights)
criterion = model.Loss()
predict = model.predict
kwargs = dict(lr=1e-4, weight_decay=0.0001) if kind == 'aleatoric' else dict(lr=1e-4)
optimizer = torch.optim.Adam(net.parameters(), **kwargs)
scheduler = ExponentialLR(optimizer, gamma=0.9999)
net.train()
for epoch in range(10):
train_losses = neural_net.train(train_loader, net, criterion, optimizer, scheduler)
print ('Train loss = %s' % (sum(train_losses) / len(train_losses)) )
score, loss = neural_net.test(test_loader, predict, net, criterion)
print ('Testing: Accuracy = %.2f%%, Loss %.4f' % (score*100, loss))
torch.save(net, '%s.pt' % kind)