|
27 | 27 | "%autoreload 2\n",
|
28 | 28 | "from multi_condition_comparisions.tl.de import StatsmodelsDE\n",
|
29 | 29 | "\n",
|
30 |
| - "import scanpy as sc\n", |
31 |
| - "import decoupler as dc" |
| 30 | + "import decoupler as dc\n", |
| 31 | + "import scanpy as sc" |
32 | 32 | ]
|
33 | 33 | },
|
34 | 34 | {
|
|
44 | 44 | "metadata": {},
|
45 | 45 | "outputs": [],
|
46 | 46 | "source": [
|
47 |
| - "#import cellxgene_census\n", |
48 |
| - "#cellxgene_census.download_source_h5ad('cd74e95e-6583-4875-a0ba-f2eae5a1e5a6.h5ad',\n", |
49 |
| - " #to_path=\"breast_cancer.h5ad\")\n", |
| 47 | + "import cellxgene_census\n", |
50 | 48 | "\n",
|
51 |
| - "#adata = sc.read_h5ad('./cd74e95e-6583-4875-a0ba-f2eae5a1e5a6.h5ad')" |
| 49 | + "cellxgene_census.download_source_h5ad(\"cd74e95e-6583-4875-a0ba-f2eae5a1e5a6.h5ad\", to_path=\"breast_cancer.h5ad\")\n", |
| 50 | + "\n", |
| 51 | + "adata = sc.read_h5ad(\"./cd74e95e-6583-4875-a0ba-f2eae5a1e5a6.h5ad\")" |
52 | 52 | ]
|
53 | 53 | },
|
54 | 54 | {
|
|
57 | 57 | "metadata": {},
|
58 | 58 | "outputs": [],
|
59 | 59 | "source": [
|
60 |
| - "adata.layers['counts'] = adata.raw.X\n", |
61 |
| - "adata.layers['normalised_counts'] = adata.X\n" |
| 60 | + "adata.layers[\"counts\"] = adata.raw.X\n", |
| 61 | + "adata.layers[\"normalised_counts\"] = adata.X" |
62 | 62 | ]
|
63 | 63 | },
|
64 | 64 | {
|
|
116 | 116 | }
|
117 | 117 | ],
|
118 | 118 | "source": [
|
119 |
| - "pbulk = dc.get_pseudobulk(adata,\n", |
120 |
| - " sample_col='donor_id',\n", |
121 |
| - " groups_col='cell_type',\n", |
122 |
| - " layer='normalised_counts',\n", |
123 |
| - " mode='sum',\n", |
124 |
| - " min_cells=10,\n", |
125 |
| - " min_counts=1000,\n", |
| 119 | + "pbulk = dc.get_pseudobulk(\n", |
| 120 | + " adata,\n", |
| 121 | + " sample_col=\"donor_id\",\n", |
| 122 | + " groups_col=\"cell_type\",\n", |
| 123 | + " layer=\"normalised_counts\",\n", |
| 124 | + " mode=\"sum\",\n", |
| 125 | + " min_cells=10,\n", |
| 126 | + " min_counts=1000,\n", |
126 | 127 | ")\n",
|
127 | 128 | "\n",
|
128 | 129 | "pbulk"
|
|
713 | 714 | }
|
714 | 715 | ],
|
715 | 716 | "source": [
|
716 |
| - "mod.test_contrasts({\"T cells\": mod.cond(disease=\"breast cancer\", cell_type=\"T cell\") - mod.cond(disease=\"normal\", cell_type=\"T cell\")},\n", |
717 |
| - " {\"fibroblasts\": mod.cond(disease=\"breast cancer\", cell_type=\"fibroblast\") - mod.cond(disease=\"normal\", cell_type=\"fibroblast\")})" |
| 717 | + "mod.test_contrasts(\n", |
| 718 | + " {\"T cells\": mod.cond(disease=\"breast cancer\", cell_type=\"T cell\") - mod.cond(disease=\"normal\", cell_type=\"T cell\")},\n", |
| 719 | + " {\n", |
| 720 | + " \"fibroblasts\": mod.cond(disease=\"breast cancer\", cell_type=\"fibroblast\")\n", |
| 721 | + " - mod.cond(disease=\"normal\", cell_type=\"fibroblast\")\n", |
| 722 | + " },\n", |
| 723 | + ")" |
718 | 724 | ]
|
719 | 725 | }
|
720 | 726 | ],
|
|
0 commit comments