|
27 | 27 | "%autoreload 2\n",
|
28 | 28 | "from multi_condition_comparisions.tl.de import StatsmodelsDE\n",
|
29 | 29 | "\n",
|
30 |
| - "import scanpy as sc\n", |
31 | 30 | "import decoupler as dc"
|
32 | 31 | ]
|
33 | 32 | },
|
|
44 | 43 | "metadata": {},
|
45 | 44 | "outputs": [],
|
46 | 45 | "source": [
|
47 |
| - "#import cellxgene_census\n", |
48 |
| - "#cellxgene_census.download_source_h5ad('cd74e95e-6583-4875-a0ba-f2eae5a1e5a6.h5ad',\n", |
49 |
| - " #to_path=\"breast_cancer.h5ad\")\n", |
| 46 | + "# import cellxgene_census\n", |
| 47 | + "# cellxgene_census.download_source_h5ad('cd74e95e-6583-4875-a0ba-f2eae5a1e5a6.h5ad',\n", |
| 48 | + "# to_path=\"breast_cancer.h5ad\")\n", |
50 | 49 | "\n",
|
51 |
| - "#adata = sc.read_h5ad('./cd74e95e-6583-4875-a0ba-f2eae5a1e5a6.h5ad')" |
| 50 | + "# adata = sc.read_h5ad('./cd74e95e-6583-4875-a0ba-f2eae5a1e5a6.h5ad')" |
52 | 51 | ]
|
53 | 52 | },
|
54 | 53 | {
|
|
57 | 56 | "metadata": {},
|
58 | 57 | "outputs": [],
|
59 | 58 | "source": [
|
60 |
| - "adata.layers['counts'] = adata.raw.X\n", |
61 |
| - "adata.layers['normalised_counts'] = adata.X\n" |
| 59 | + "adata.layers[\"counts\"] = adata.raw.X\n", |
| 60 | + "adata.layers[\"normalised_counts\"] = adata.X" |
62 | 61 | ]
|
63 | 62 | },
|
64 | 63 | {
|
|
116 | 115 | }
|
117 | 116 | ],
|
118 | 117 | "source": [
|
119 |
| - "pbulk = dc.get_pseudobulk(adata,\n", |
120 |
| - " sample_col='donor_id',\n", |
121 |
| - " groups_col='cell_type',\n", |
122 |
| - " layer='normalised_counts',\n", |
123 |
| - " mode='sum',\n", |
124 |
| - " min_cells=10,\n", |
125 |
| - " min_counts=1000,\n", |
| 118 | + "pbulk = dc.get_pseudobulk(\n", |
| 119 | + " adata,\n", |
| 120 | + " sample_col=\"donor_id\",\n", |
| 121 | + " groups_col=\"cell_type\",\n", |
| 122 | + " layer=\"normalised_counts\",\n", |
| 123 | + " mode=\"sum\",\n", |
| 124 | + " min_cells=10,\n", |
| 125 | + " min_counts=1000,\n", |
126 | 126 | ")\n",
|
127 | 127 | "\n",
|
128 | 128 | "pbulk"
|
|
713 | 713 | }
|
714 | 714 | ],
|
715 | 715 | "source": [
|
716 |
| - "mod.test_contrasts({\"T cells\": mod.cond(disease=\"breast cancer\", cell_type=\"T cell\") - mod.cond(disease=\"normal\", cell_type=\"T cell\")},\n", |
717 |
| - " {\"fibroblasts\": mod.cond(disease=\"breast cancer\", cell_type=\"fibroblast\") - mod.cond(disease=\"normal\", cell_type=\"fibroblast\")})" |
| 716 | + "mod.test_contrasts(\n", |
| 717 | + " {\"T cells\": mod.cond(disease=\"breast cancer\", cell_type=\"T cell\") - mod.cond(disease=\"normal\", cell_type=\"T cell\")},\n", |
| 718 | + " {\n", |
| 719 | + " \"fibroblasts\": mod.cond(disease=\"breast cancer\", cell_type=\"fibroblast\")\n", |
| 720 | + " - mod.cond(disease=\"normal\", cell_type=\"fibroblast\")\n", |
| 721 | + " },\n", |
| 722 | + ")" |
718 | 723 | ]
|
719 | 724 | }
|
720 | 725 | ],
|
|
0 commit comments