-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathreprocess_language_statistics.py
141 lines (128 loc) · 4 KB
/
reprocess_language_statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import json
import copy
from argparse import ArgumentParser
def sort_dictionary(dict_: dict, by_key=False, reversed_=True):
return {
key: value
for key, value in sorted(
list(dict_.items()),
key=lambda a: a[0 if by_key else 1] * (-1 if reversed_ else 1),
)
}
def interpret(sub_content: dict):
sub_reprocessed = {}
counter = sub_content["counter"]
sub_reprocessed["average_overlap"] = (
sub_content["overlap"]["average_number"] / counter
)
sub_reprocessed["average_percentage"] = (
sub_content["overlap"]["average_percentage"] / counter
)
sub_reprocessed["any_sf_per_language"] = sort_dictionary(
{
key: value / counter
for key, value in copy.deepcopy(sub_content["languages_any_sf"]).items()
}
)
sub_reprocessed["label_per_entity"] = sort_dictionary(
{
key: value / counter
for key, value in copy.deepcopy(sub_content["languages_labels"]).items()
}
)
sub_reprocessed["languages_aliases"] = sort_dictionary(
{
key: value / counter
for key, value in copy.deepcopy(sub_content["languages_aliases"]).items()
}
)
sub_reprocessed["num_languages"] = len(sub_content["languages_labels"])
sub_reprocessed["languages_per_entity"] = sort_dictionary(
{
key: value / counter
for key, value in sub_content["languages_per_entity"].items()
},
False,
True,
)
sub_reprocessed["languages_num_labels_aliases"] = sort_dictionary(
{
key: sum([int(key_) * value_ for key_, value_ in value.items()]) / counter
for key, value in sub_content["labels_per_entity_per_language"].items()
}
)
sub_reprocessed["average_number_of_labels"] = (
sum(
[
int(key) * value
for key, value in sub_content["labels_per_entity"].items()
]
)
/ counter
)
sub_reprocessed["languages_per_entity_avg"] = (
sum(
[
int(key) * value
for key, value in sub_content["languages_per_entity"].items()
]
)
/ counter
)
sub_reprocessed["average_number_of_languages_labels"] = (
sum(
[
int(key) * value
for key, value in sub_content["languages_per_entity_labels"].items()
]
)
/ counter
)
sub_reprocessed["average_number_of_languages_descriptions"] = (
sum(
[
int(key) * value
for key, value in sub_content["descriptions_per_entity"].items()
]
)
/ counter
)
sub_reprocessed["average_number_of_languages_descriptions_v2"] = (
sum(
[
int(key) * value
for key, value in sub_content[
"languages_per_entity_description"
].items()
]
)
/ counter
)
sub_reprocessed["description_per_languages"] = sort_dictionary(
{
key: value / counter
for key, value in copy.deepcopy(
sub_content["descriptions_per_language"]
).items()
}
)
sub_reprocessed["descriptions_per_entity"] = sort_dictionary(
{
key: value / counter
for key, value in sub_content["descriptions_per_entity"].items()
},
False,
True,
)
return sub_reprocessed
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("filename", type=str)
args = parser.parse_args()
reprocessed = {}
with open(args.filename) as f:
content = json.load(f)
reprocessed["items"] = interpret(content["items"])
reprocessed["properties"] = interpret(content["properties"])
with open("language_statistics_reprocessed.json", "w") as f:
json.dump(reprocessed, f, indent=4)