forked from WeilunWang/semantic-diffusion-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_train.py
121 lines (108 loc) · 3.42 KB
/
image_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
"""
Train a diffusion model on images.
"""
import os
import argparse
from guided_diffusion import dist_util, logger
from guided_diffusion.image_datasets import load_data
from guided_diffusion.resample import create_named_schedule_sampler
from guided_diffusion.script_util import (
model_and_diffusion_defaults,
create_model_and_diffusion,
args_to_dict,
add_dict_to_argparser,
)
from guided_diffusion.train_util import TrainLoop
def main():
args = create_argparser().parse_args()
dist_util.setup_dist()
logger.configure()
logger.log("creating model and diffusion...")
model, diffusion = create_model_and_diffusion(
**args_to_dict(args, model_and_diffusion_defaults().keys())
)
model.to(dist_util.dev())
schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
logger.log("creating data loader...")
data = load_data(
dataset_mode=args.dataset_mode,
data_dir=args.data_dir,
batch_size=args.batch_size,
image_size=args.image_size,
class_cond=args.class_cond,
num_classes=args.num_classes,
is_train=args.is_train,
use_hv_map=args.use_hv_map,
use_col_map=args.use_col_map,
preserve_nuclei_col=args.preserve_nuclei_col,
in_channels=args.in_channels,
subsample=args.subsample,
)
val_data = load_data(
dataset_mode=args.dataset_mode,
data_dir=args.data_dir,
batch_size=args.batch_size,
image_size=args.image_size,
class_cond=args.class_cond,
num_classes=args.num_classes,
is_train=False,
use_hv_map=args.use_hv_map,
use_col_map=args.use_col_map,
preserve_nuclei_col=args.preserve_nuclei_col,
in_channels=args.in_channels,
)
logger.log("training...")
TrainLoop(
model=model,
diffusion=diffusion,
data=data,
num_classes=args.num_classes,
batch_size=args.batch_size,
microbatch=args.microbatch,
lr=args.lr,
ema_rate=args.ema_rate,
drop_rate=args.drop_rate,
log_interval=args.log_interval,
save_interval=args.save_interval,
resume_checkpoint=args.resume_checkpoint,
use_fp16=args.use_fp16,
fp16_scale_growth=args.fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=args.weight_decay,
lr_anneal_steps=args.lr_anneal_steps,
class_cond=args.class_cond,
val_data=val_data,
drop_hvb_only=args.drop_hvb_only,
).run_loop()
def create_argparser():
defaults = dict(
data_dir="",
dataset_mode="",
schedule_sampler="uniform",
lr=1e-4,
weight_decay=0.0,
lr_anneal_steps=0,
batch_size=1,
microbatch=-1, # -1 disables microbatches
ema_rate="0.9999", # comma-separated list of EMA values
drop_rate=0.0,
log_interval=10,
save_interval=30000,
resume_checkpoint="",
use_fp16=False,
fp16_scale_growth=1e-3,
is_train=True,
use_hv_map=False,
use_col_map=False,
preserve_nuclei_col=False,
subsample=None,
drop_hvb_only=False,
shuffle_masks=False,
augment=False,
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
main()